

CHAIRS:

Séverine Le Gac

University of Twente, THE NETHERLANDS

Hang Lu

Georgia Institute of Technology, USA

FINAL PROGRAM

Sponsored by


All indicated times in the program are US Eastern times (New York).

Conference Sponsor

Chemical and Biological Microsystems Society (CBMS)

cbmsociety.org

The Chemical and Biological Microsystems Society (CBMS) is a non profit organization without membership, aiming at the promotion and advancement of science and engineering in the field of chemical and biological microsystems, and to stimulate the exchange of ideas and information between academic, industrial, and government researchers.

MiliLitre Benefactor

Emulseo

Chemlnnov - 14 avenue Pey Berland

Pessac, 33600 FRANCE phone: +33-53-554-1006 <u>contact@emulseo.com</u> www.emulseo.com

Based in the south west of France, Emulseo has been founded in 2018 by Jean-Christophe Baret, Valérie Taly and Florine Maes. Emulseo develops formulations for microfluidic technology such as the surfactant for droplet-based microfluidics named FluoSurf. Emulseo comes from Jean-Christophe Baret Lab at the Centre de Recherche Paul Pascal in Pessac. Emulseo has thus a strong expertise in microfluidics and aims to help and collaborate with customers in improving and developing new products.

Fluigent

67 Avenue de Fontainebleau Le Kremlin Bicetre, 94270 FRANCE

phone: +33-177-01-8268 <u>contact@fluigent.com</u> www.fluigent.com

Fluigent's broad range of solutions for use in microfluidic technologies and nanofluidics applications offer greater control, automation, precision, and ease of use. If you're seeking to replace high-precision syringe pumps or other conventional instruments, discover the LineUp series, which offer an excellent solution that minimize contamination and ensure full control of flow rates without the need of a computer.

MicroLitre Benefactor

Nanoscribe GmbH

Hermann-von-Helmholtz-Platz 6 Eggenstein-Leopoldshafen, 76344 GERMANY

phone: +49-721-981-980-0 info@nanoscribe.com www.nanoscribe.com

Nanoscribe GmbH develops and provides 3D printers and maskless lithography systems for microfabrication as well as photoresins and process solutions. Today's market and technology leader for additive microfabrication was founded in 2007 as a spin-off of the Karlsruhe Institute of Technology (KIT, Germany) and has evolved to a medium-sized company with more than 70 employees and subsidiaries in China and the United States. Worldwide, more than 1,500 scientists at top universities and pioneer companies benefit from Nanoscribe's groundbreaking technology and award-winning solutions for 3D microfabrication. Rapid and dedicated customer support, as well as a worldwide service, are a matter of course for us.

RAN Biotechnologies, Inc.

100 Cummings Center, Suite 434J Beverly, MA 01915 USA

phone: 1-833-726-2661 <u>info@ranbiotechnologies.com</u> www.ranbiotechnologies.com

RAN Biotechnologies provides reagents and kits for microfluidics, including: Gold standard FluoroSurfactants for water-inoil emulsions; Customizable Hydrogel Beads: Chip-Free Engineered Droplet Generation kits. All our products combine: w High purity w Reproducibility w Material Customization w Custom Packaging w Experienced Technical and Scientific Support.

Zurich Instruments AG

Technoparkstrasse 1 Zurich, 8049 SWITZERLAND phone: +41-44-515-0410

info@zhinst.com www.zhinst.com

Zurich Instruments is a manufacturer of test & measurement equipment for advanced research & development applications. The instruments use LabOne® control software that sets a benchmark for efficient instrumentation control and a good user experience. This progressive approach reduces the complexity of laboratory setups, removes sources of problems and supports new measurement strategies that accelerate the progress of research. Zurich Instruments' portfolio comprises lock-in amplifiers, arbitrary waveform generators, impedance analyzers, quantum computing control systems, phase-locked loops and boxcar averagers.

NanoLitre Benefactor

NanoLitre Benefactor

BEOnChip

Ceminem. C/Mariano Esquillor S/N

Zaragoza, 50018 SPAIN phone: +34-65-516-1691 info@beonchip.com www.beonchip.com

Biond Solutions B.V.

Mekelweg 4

Delft, 2628CD THE NETHERLANDS

phone: +31-62-831-3367 info@biondteam.com www.gobiond.com

Empowering biological innovation by engineering microchips through nourishing, stimulating and monitoring cells. Bi/ond platform is versatile, as it is qualified for culturing complex 3D tissues (organoids, ex vivo tissue, spheroids, microtissues) as well as for tissue-tissue interface models. Our system consists of six microfluidic chips (inCHIPit) inserted on a six-well plate (comPLATE), designed for a seamless fit. Get in touch with us for a demo.

Dolomite Microfluidics

1 Anglian Business Park Royston, SG8 5TW UK phone: +44-1763-252-149

<u>info@dolomite-microfluidics.com</u> www.dolomite-microfluidics.com

Dolomite Microfluidics is the industry leader in the design and manufacture of high quality innovative microfluidic products. The company offers a range of microfluidic systems, modules and components - including pumps, chips, connectors, temperature controllers, sensors, accessories and custom-made components - as well as software for analysis or automation. Modularity, ease of use, innovation and scalability are common to all Dolomite products, which are used across a broad range of applications in biology, drug discovery, chemistry, food, cosmetics and academia. Dolomite is a part of the Blacktrace group of companies, a world leader in Productizing Science®, and has offices in the UK, USA, Japan, Hanoi as well as a worldwide network of distributors.

Heidelberg Instruments, Inc.

2539 W. 237th Street, Suite A Torrance, CA 90505 USA phone: 1-310-212-5071

info@himt.de www.himt.de

Heidelberg Instruments is a world leader in the production of high-precision direct write lithography systems and maskless aligners. Due to their flexibility, these systems are used in research, development and industrial applications for direct writing and photomask production by some of the most prestigious universities and industry leaders in the areas of MEMS, BioMEMS, nano technology, ASICS, TFT, plasma displays, micro optics, and many other related applications.

HiComp Microtech (Suzhou) Co., Ltd.

F4, NW-17, Nanopolis Suzhou 99 Jinji Lake Avenue, Suzhou Industrial Park Suzhou, 215000 CHINA phone: +86-512-8781-6000

info@hicomp.com www.hicomp.com

The HICOMP MicroTech(Suzhou) Company Limited is an original design manufacturer of high quality components based on cutting-edge micro/nano technologies founded in 2014. We have developed exclusive technologies to produce components with the smallest feature of several micrometers in polymer, glass, ceramic and metal substrates. The target markets include microfluidic and biochips, MEMS and advanced packaging, with a focus on the microfluidics enabled products. Since 2017, we have transformed from a parts supplier to a comprehensive lab-on-a-chip product development and manufacturing partner, providing custom solutions for applications in immunology, clinical chemistry, DNA sequencing and cell manipulation.

microfluidic ChipShop GmbH

Stockholmer Strasse 20 Jena, THURINGIA 07747 GERMANY

phone: +49-36-4134-7050 inquiries@microfluidic-ChipShop.com

www.microfluidic-chipshop.com

microfluidic ChipShop is one of the leading microfluidic service providers and is an established OEM partner in microfluidic cartridge/system development and manufacturing for the diagnostic, pharma and the life science industry. A unique feature of the company is its catalogue with off-the-shelf microfluidic components and systems, allowing a low-cost rapid access to labon-a-chip technologies. microfluidic ChipShop offers complete system (cartridge, instrument and assay) development and manufacturing in an ISO 13485 environment.

Micronit Microtechnologies BV

Colosseum 15

Enschede, 7521 PV THE NETHERLANDS

phone: +31-53-850-6850 <u>info@micronit.com</u> www.micronit.com

Newormics

6101 Highland Campus Drive Building 4000, Room 4 2250 Austin, TX 78752 USA

support@newormics.com

www.newormics.com

Newormics develops high-throughput, high-content, microfluidics-based imaging systems for toxicology screens and disease modeling, using small model organisms such as C. elegans, and tissue organoids. Our flagship product, the *vivo*Chip®, is a microfluidics platform for immobilizing up to ~4,000 C. elegans from 96 individually treated populations within 3 minutes, for high-resolution imaging of cellular and sub-cellular features. *vivo*Screen® is a fully integrated fluorescence microscopy system for automated high-speed imaging of whole animals in the chip. It provides software to streamline data analysis with a user-friendly GUI for phenotypic scoring, and records dose-dependent effects for toxicity assessment with high statistical power.

OAI

464 South Hillview Drive Milpitas, CA 95035 USA phone: 1-408-232-0600 sales@oainet.com

www.oainet.com

With over 45 years of experience in the engineering and manufacturing of precision, reliable, and cost-effective lithography solutions, OAI offers a complete series of Mask Aligners, UV Light Sources, and UV Measurement Instrumentation for the Microfluidics, BioTech, MEMS, and Semiconductor Industries. OAI's UV LED Light Source features the same uniformity, intensity and collimation as a standard UV Light Source. This year, OAI introduces for Biotechnology, a Production Mask Aligner with Auto Mask Changer which allows for multiple exposures on the same level and holds up to 100 masks. OAI maintains sales and service worldwide.

Sensific GmbH

Kurze Lemppen 1 Ulm, 89075 GERMANY phone: +49-160-9627-0362

info@sensific.de www.sensific.de

Sensific develops innovative measurement technology for research and development. Our first product ODIN is a user-friendly imaging based high-throughput analysis and control system for microfluidics. It analyzes objects fully automatic and controls manipulation devices like sorting gates based on predefined criteria or a machine learning process. It measures more than 30 parameters like size, brightness, granularity, circumference and speed of any passing object like droplets, particles, cells or even complex structures and distinguishes different populations like droplets with certain numbers of encapsulated objects. ODIN works with any optical contrast like bright-field, phase-contrast or fluorescence and integration in most experiments is easy.

Zeon Specialty Materials Inc.

25 Metro Drive, #238 San Jose, CA 95110 USA phone: 1-408-641-7889

www.zeonsmi.com

ZEON SPECIALTY MATERIALS (ZSM) is a wholly owned subsidiary of ZEON CORPORATION, a global world leader in the production of specialty elastomers, polymers, and chemicals. ZEON manufactures ZEONEX and ZEONOR Cyclo Olefin Polymer; an ultra-pure, inert, low-fluorescence polymer with glass-like transparency making them ideal choices for optical, diagnostic and life science devices. With a headquarters in San Jose, CA ZSM has positioned itself to not only provide distribution and technical support for COP but also provide microfluidic prototyping services to further aid companies in their development process.

PicoLitre Benefactor

AcouSort AB

Medicon Village, Building 406 Lund, 22381 SWEDEN phone: +46-707-877-061

sales@acousort.com www.acousort.com

AcouSort provides innovative products and solutions for automated preparation of biological samples for researchers and life-science companies. The core technology is acoustofluidics where a combination of microfluidics and sound waves is used to separate blood into its components, to isolate and purify cells and extracellular vesicles and to perform rapid biochemical reactions. With our adaptable technology, sample preparation is tailored to address a wide range of applications - from early biomarker discovery to point of care diagnostics. AcouSort offers stand-alone products for automated sample handling, custom solutions through joint development and off-the-shelf OEM modules for integration in analytical instrument.

BioMedical Microdevices: BioMEMS and Biomedical Nanotechnology

1 New York Plaza New York, NY 10004 USA

phone: +31-7865-76100

<u>davide.migliorini@springernature.com</u> https://www.springer.com/journal/10544

Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. Subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests include systems for neural stimulation and recording, bioseparation technologies, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.

Biophysical Tools GmbH

Deutscher Platz 5b Leipzig, 04103 GERMANY phone: +49-341-3929-8131 info@biophysical-tools.de

<u>info@biophysical-tools.de</u> <u>www.biophysical-tools.de</u>

Biophysical Tools supports you all around the topic of ultra-precise and fast flow control of fluids in microfluidics / mesofluidics and offers further innovative devices for various biophysical applications. Benefit from our expertise in ultra-precise and -fast flow control of fluids in Microfluidics and Mesofluidics, which is the focus of our leading product groups - a pressure-driven flow control system and multi-channel perfusion system. Our novel products such as tissue stretcher, mobile microscope module and diverse accessories will enhance the usability of your microfluidic setups. Furthermore, we offer numerical simulations of flows, design of microfluidic chips, rapid prototyping and experiment support.

CADworks3D

27 Queen Street, East Suite 1401 Toronto, ON M5C 2M6 CANADA

phone: 1-416-368-7266 www.cadworks3d.com

CADworks3D was established in 2018 with the intention of providing exceptional user support, cost effective and microfluidic specific 3D printing solutions. By combining groundbreaking 3D printer technology with an in house 3D materials development team, CADworks3D are able to provide 3D solutions to the unique needs of microfluidic researchers, startups and established bio-tech firms. The team at CADworks3D brings together over 20 years of experience in CAD, 3D printing and 3D materials development to empower institutions and research labs with the best technical support.

Center of BioModular MultiScale Systems for Precision Medicine (CBM²)

University of Kansas Integrated Science Building 1567 Irving Hill Road Lawrence, KS 66045 USA phone: 1-785-864-4160

lindseyp@ku.edu www.cbmm.ku.edu

The Center of BioModular Multi-Scale Systems for Precision Medicine (CBM²) is an NIH-funded national Biotechnology Resource Center with expertise in designing, fabricating, and delivering to the biomedical community plastic-based microfluidic and nanofluidic devices that utilize liquid biopsies for disease detection and management. The Center seeks opportunities to disseminate its Core Technologies through Collaborative and Service Projects with clinicians and researchers. CBM² invites researchers at all levels to participate in its Visiting Scholar Program, to learn more about plastic-based microfluidics/nanofluidics for a variety of applications. With a strong infrastructure of equipment, expertise, and training programs, we are ready to help you.

Elsevier

Radarweg 29

Amsterdam, 1043 NX THE NETHERLANDS

www.elsevier.com

Elsevier, a global leader in information and analytics, helps researchers and healthcare professionals advance science and improve health outcomes for the benefit of society. Growing from our roots in publishing, we have supported the work of our research and health partners for more than 140 years. Elsevier offers knowledge and valuable analytics that help our users make breakthroughs and drive societal progress. Digital solutions such as ScienceDirect, Scopus, SciVal, ClinicalKey and Sherpath support strategic research management, R&D performance, clinical decision support, and health education. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell; our 39,000 eBook titles; and our iconic reference works, such as Gray's Anatomy. Elsevier is part of RELX, a global provider of information-based analytics and decision tools for professional and business customers.

Elvesys

172 Rue de Charonne Paris, 75011 FRANCE phone: +1-33-188-334-368 <u>contact@elveflow.com</u> <u>www.elveflow.com</u>

ELVEFLOW is an innovative company with expertise in flow management and microfluidic instrumentation. ELVEFLOW proposes the world's widest brand of microfluidic flow control products. The main mission of the company is to provide state-of-the-art instruments to scientists to help them achieve major advances in their research field. The second mission is to facilitate the access of non-specialists (chemists, biologists) to microfluidics through the development of "plug and play" all-inclusive packs dedicated to specific applications. ELVEFLOW is actively involved in international research projects and the management team has created 9 innovative companies related to microfluidics in the last 8 years.

Hahn-Schickard

Georges-Köhler-Allee 103 Freiburg, 79110 GERMANY phone: +49 761 203-73200 info@Hahn-Schickard.de www.Hahn-Schickard.de

Lab-on-a-chip - from the initial idea to the final product: Hahn-Schickard is your one-stop-shop, offering the whole R+D workflow for development, test and pilot production. At its site in Freiburg (Germany), the focus is on customized solutions for research and molecular point-of-need diagnostics. The R+D service provider solves your challenges in miniaturized liquid handling, assay development and instrumentation. With a pilot line, Hahn-Schickard can deliver Lab-on-a-chip cartridges for validation and market entry supporting the product visions of its customers even more effectively.

Hexano

PO Box 29029, Moncton North Moncton, E1G1A0 CANADA phone: 1-800-695-0021

info@hexano.net www.hexano.net

Hexano brings your microfluidic chips out of the lab and commercializes it. We focus on mass manufacturing through plastic injection. We also offer prototyping services so you can migrate from your PDMS chips to thermoplastics. Choose Hexano as your manufacturing partner and we'll handle the rest.

IamFluidics BV

Enschede, 7522 THE NETHERLANDS

phone: +31-53-234-0044 info@iamfluidics.com www.iamfluidics.com

Icomes Lab Co., Ltd.

2-4-23, Kitaiioka

Morioka, 020-0857 JAPAN phone: +81-19-601-8157 globalinfo@icomes.co.jp www.icomes.co.jp/en

Micro Actuator × Liquid Handling. Unique liquid handling device and Made in Japan

Jobst Technologies GmbH

Engesserstrasse 4b

Freiburg, 79108 GERMANY phone: +49-761-6129-5473 customer-care.jobst@ist.ag.com www.jobst-technologies.com

Jobst Technologies GmbH is offering its core competencies in the overlap between microsystems technology, (bio)electrochemical analytics and microfluidics to its customers. The company is unrivaled competence leader in bioanalytical applications with OEM products in clinical routine continuous monitoring and biotechnology as well as micro/nano fluidic systems. B2B contract development together with EU research projects provides permanent extension of the company's technology and product portfolio. "Rational technology integration aiming at bio-micro convergence" is a slogan created by Gerhard. Jobst, CEO of Jobst Technologies. Adding a strong dedication to customer satisfaction this leads to real world systems of outstanding reliability and stability.

LabSmith

5981 Graham Court Livermore, CA 94550 USA phone: 1-925-292-5164 info@labsmith.com www.labsmith.com

LabSmith, designs and manufactures laboratory tools for microfluidics and microbiology. LabSmith products control all aspects of experimentation, including microfluidic fluid routing and automation components, high voltage supplies for electrophoresis and gel electrophoresis, and inverted fluorescence video microscopes for capturing and quantifying key events. For research and OEM applications, LabSmith products and software work together to take the headaches out of experimental setup, so you can focus on science.

μFluidic - Nehir Biyoteknoloji Ltd.

ODTU-OSTIM Teknokent, 1308 Cd, No-6-2B8 Yenimahalle, 06374 TURKEY

phone: +90-312-386-0423 hello@ufluidic.com www.uFluidic.com

PreciGenome

2176 Ringwood Avenue San Jose, CA 95131 USA phone: 1-408-708-4602 info@precigenome.com www.precigenome.com

PreciGenome's innovative microfluidic pressure/flow controller and high speed imaging system are the most convenient tools for a variety of applications and system integration. Combining them with valves, tubing and fitting, reservoir kits, and microfluidic chips, we successfully demonstrated perfusion systems (multiple reagent dispensing or media recirculating perfusion), droplet generation systems, single cell encapsulation systems, nanoparticle synthesis systems, and organ-on-a-chip systems, etc. PreciGenome also offers custom design and OEM solutions for customers who need microfluidic instrument development and production.

Research, a Science Partner Journal

1200 New York Avenue, NW Washington, DC 20005 USA phone: 202-326-6417

spj.sciencemag.org/journals/research/

The Science Partner Journal Research is and online Open Access journal distributed by the American Association for the Advancement of Science (AAAS) in association with Science and Technology Review Publishing House, the publishing house under the leadership of China Association for Science and Technology (CAST). Research provides an international platform for academic exchange, collaboration and technological advancements. The journal publishes fundamental research in the life and physical sciences as well as important findings or issues in engineering and applied science.

Science Advances/AAAS

1200 New York Avenue, NW Washington, DC 20005 USA phone: 1-202-326-6417

scienceadvanceseditorial@aaas.org

advances.sciencemag.org

Science Advances is the American Association for the Advancement of Science's (AAAS) gold open access journal, publishing research papers and reviews in all areas of science. Its mission is to provide fair, fast, and expert peer review and a vetted selection of research, freely available to all readers. Science Advances extends the capacity of Science magazine to identify and promote significant advances and developments across a wide range of areas. The journal plays a critical role in building and sustaining AAAS's mission as a global participant and advocate for the communication and use of science to benefit humankind.

Springer Nature

1 New York Plaza, Suite 4600 New York, NY 10004 USA phone: 1-212-460-1500

custormerservice@springernatuer.com

www.springer.com

STRATEC Consumables GmbH

Sonystrasse 20

Anif, Salzburg, 5081 AUSTRIA

phone: +43-6246-21250 consumables@stratec.com

www.stratec.com/solutions/consumables

STRATEC Consumables GmbH is a leading OEM supplier of smart polymer-based consumables to the in-vitro diagnostics, life sciences and medical technology industries. The company has an unique combination of skills and technologies including nano- and microstructuring, coating technologies, polymer sciences, and automated assembly. With its certified production facility and a global logistics network, STRATEC Consumables covers the entire value chain, from development via production and quality assurance through to logistics. The company meets all regulatory requirements in the relevant target markets. Its customers include global players in highly regulated markets as well as innovative start-ups.

Vision Research

100 Dey Road Wayne, NJ 07470 USA

phone: 1-973-696-4500 phantom@ametek.com www.phantomhighspeed.com

Media Benefactor

Microtech Ventures, Inc.

550 Merrill Street, Suite 240 Birmingham, MI 48009 USA

info@microtechventures.com

microtechventures.com

Microtech Ventures is focused on strategic venture capital, angel investing, and M&A advisory services. Our mission is to accelerate the development of MEMS, sensors, and microtechnologies for the advancement of human civilization and the improvement of quality of life. Our deep industry knowledge and extensive network, combined with practical hands-on strategy experience, enables us to quickly identify the connections that result in multiple opportunities to maximize ownership value, and ensure successful outcomes.

separations

MDPI Academic Open Access Publishing Since 1996 St. Alban-Anlage 66 Basel, 4052 SWITZERLAND

phone: +41-61-683-7734 separations@mdpi.com

www.mdpi.com/journal/separations

Awards

Analytical Chemistry Young Innovator Award

This award, sponsored by the Journal of Analytical Chemistry and Chemical and Biological Microsystems Society (CBMS), recognizes the contributions of an individual who has demonstrated exceptional technical advancement and innovation in the field of micro- or nanofluidics in his or her early career.

Lab on a Chip and Dolomite Pioneers in Miniaturization Prize

An award given for young-to-mid-career scientists, the prize recognizes outstanding contributions to the understanding and development of miniaturized systems. Sponsored by Lab on a Chip, Dolomite, and Chemical and Biological Microsystems Society (CBMS).

Awards, continued

NIST and Lab on a Chip Art in Science Award

To draw attention to the aesthetic value in scientific illustrations while still conveying scientific merit, the MicroTAS Conference features an award titled, "Under the Looking Glass: Art from the World of Small Science" sponsored by NIST and Lab on a Chip. Applications are encouraged from any person attending the MicroTAS Conference and the winner will be selected by a panel of senior scientists in the field of MicroTAS.

Lab on a Chip Widmer Poster Award

The Widmer Poster Award Competition sponsored by the Lab on a Chip is an award given to recognize excellence amongst the annual MicroTAS Conference poster presenters. A review committee will select the overall best-presented poster from the poster session and all presented posters will be reviewed for this honor.

Labona Chip

CHEMINAS Young Researcher Poster Awards

The Young Researcher Poster Award Competition sponsored by The Society for Chemistry and Micro-Nano Systems (CHEMINAS) to recognize excellence among its participants. A select group of poster judges will select, on a daily basis, the best presented posters from the poster session.

IMT Masken und Teilungen AG Microfluidics on Glass Poster Award

To be relevant to the spirit and intent of this Microfluidics on Glass Award, the advancement considered must address at least one of the following: • Use glass as a substrate material for a nano/microfluidic device where the unique optical, electrical, or surface properties of glass provide a profound advantage; • Demonstrate novel biosensing capabilities; • Exhibit hybridisation of glass with other materials (composites); • Establish design for manufacturability with materials and processes that have the potential to be scaled up through transfer to industry

MDPI Micromachines & the Chemical Biological Microsystems Society (CBMS) Flash Presentation Award Sponsors

The Flash Presentation Award sponsored by MDPI Micromachines & the Chemical Biological Microsystems Society (CBMS) to recognize excellent poster presenters with flash presentations to advertise their posters in a dynamic and creative manner. Attributes of excellence include being original and highly informative; other attributes including being visually appealing and using humor may be appreciated as well.

Awards, continued

Sensors (MDPI) Outstanding Sensors and Actuators, Detection Technologies Poster Award

The Outstanding Sensors and Actuators, Detection Technologies Poster Award Competition sponsored by Sensors (MDPI), is to recognize excellence among its participants.

Biomicrofluidics - Best Paper Award

The Best Paper Award sponsored by Biomicrofluidics to recognize the three best papers submitted to the MicroTAS Conference.

Biomicrofluidics

Workshops - Saturday, October 3

Workshop 1 09:00 - 10:00

PLUG AND PLAY: FLUIDS DELIVERY AND SYSTEM INTEGRATION

Nicolas Verplanck¹, Leanna Levine², Masumi Yamada³, and Edmond Young⁴,

¹Atomic Energy and Alternative Energies Commission - CEA, FRANCE, ²ALine, Inc, USA,

³Chiba University, JAPAN, and ⁴University of Toronto, CANADA

Workshop 4 10:00 - 11:00

ADVANCED MICROSCOPY TECHNIQUES FOR CELL IMAGING IN 3D

Petra Paiè¹, Billy Huang², and Vincent Haguet³

¹Istituto di Fotonica e Nanotecnologie, CNR, ITALY, ²Nebulum Technologies, TAIWAN and

³CEA, Grenoble, FRANCE

Workshop 6 08:00 - 09:00

SURFACE FUNCTIONALIZATION IN MICROFLUIDICS

Sung Gap Im¹ and Ying-Chih Chang^{2,3}

¹Korea Advanced Institute of Science and Technology (KAIST), KOREA, ²Academia Sinica, TAIWAN, and

³Stanford University, USA

Workshop 7 08:00 - 09:00

SMALL-SCALE BIOREACTORS

Krist V. Gernaey¹, Wim De Malsche², Pei-Chen Chiang³, and Katrin Rosenthal⁴

¹Technical University of Denmark, DENMARK, ²Vrije Universiteit Brussel, BELGIUM,

³Corning Research Center, TAIWAN, and ⁴Technical University Dortmund, GERMANY

Workshop 8 09:00 - 10:00

BIO/3D-PRINTING

Shrike Zhang¹, Mei He², Oni Basu³, and Hongkai Wu⁴

¹Harvard Medical School, USA, ²University of Florida, USA, ³University of Chicago, USA, and

⁴Hong Kong University of Science and Technology, HONG KONG

Workshop 9 10:00 - 11:00

LIQUID BIOPSY - LATEST DEVELOPMENT IN THE CTC, EXOSOME AND FREE-FLOATING DNA FOR DIAGNOSIS

Sunitha Nagrath¹, Valérie Taly², Chih-Chen Chen³, Leon Terstappen⁴, Fikri Abali⁴, and Afroditi Nanou⁴

¹University of Michigan, USA, ²Université de Paris, FRANCE, ³National Tsing Hua University, TAIWAN, and ⁴University of Twente, THE NETHERLANDS

Workshop 12 11:00 - 12:00

POINT OF CARE FOR GLOBAL HEALTH

Fernando Benito Lopez¹, Yuksel Temiz², Jacqueline Linnes³, and Konstantinos Mitsakakis⁴

¹Universidad del País Vasco, SPAIN, ²IBM, SWITZERLAND, ³Purdue University, USA,

⁴University of Freiburg - IMTEK, GERMANY

Workshops - Sunday, October 4

Workshop 2 08:00 – 09:00

SENSOR INTEGRATION IN MICROFLUIDICS

Federico Paratore¹, Federica Caselli² and Chii-Wann Lin³

¹IBM, SWITZERLAND, ²University of Rome Tor Vergata, ITALY, and ³National Taiwan University, TAIWAN

Workshop 3 09:00 – 10:00

OPEN SPACE MICROFLUIDIC

Jean Berthier¹, Thomas Gervais², and Mohammad Qasaimeh³

¹University of Washington, USA, ²Polytechnique Montréal, Canada, and

³New York University Abu Dhabi, UAE

Workshop 5 11:00 – 12:00

FLOW MODELING AND VISUALIZATION IN MICROFLUIDICS

Henrik Bruus¹, Wei-Hsin Tien², Rune Barnkob³, and Yuki Minamoto⁴

¹Technical University of Denmark, DENMARK,

²National Taiwan University of Science and Technology, TAIWAN,

³Technical University of Munich, GERMANY, and ⁴Flowsquare+/Tokyo Institute of Technology, JAPAN

Workshop 10 10:30 – 11:30

ORGAN ON CHIP AND MICROFLUIDIC-BASED TISSUE ENGINEERING

Stephanie Descroix¹, Deok-Ho Kim², Rebecca Rose Pompano³, and Anna Herland⁴

¹Institut Curie - CNRS, FRANCE, ²Johns Hopkins University School of Medicine, USA,

³University of Virginia, USA, and ⁴KTH Royal Institute of Technology, SWEDEN

Workshop 11 10:00 – 11:00

DROPLET MICROFLUIDICS

Yegan Erdem¹, Håkan Jönsson², and Charles Baroud³

¹Bilkent University, TURKEY, ²KTH Royal Institute of Technology, SWEDEN, and

³Institut Pasteur, FRANCE

Day 1 - Monday, October 5

Opening Remarks – Welcome Address

08:00 CBMS President

Nicole Pamme, University of Hull, UK

College of Engineering - Georgia Institute of Technology, USA

Steve McLaughlin, Provost and Executive Vice President for Academic Affairs

University of Twente, THE NETHERLANDS

Victor van der Chijs, President Executive Board (CVB)

MicroTAS 2020 Conference Chairs

Séverine Le Gac, *University of Twente, THE NETHERLANDS* Hang Lu, *Georgia Institute of Technology, USA*

Plenary Speaker Presentation I

Session Chairs

Je-Kyun Park, Korea Advanced Institute of Science and Technology (KAIST), KOREA Manabu Tokeshi, Hokkaido University, JAPAN

08:25 - 09:25

MP-01

ON-CHIP ROBOTICS: EMERGING FUNCTIONS IN MICROFLUIDIC ENVIRONMENT WITH INTEGRATION OF SENSORS & ACTUATORS

Fumihito Arai University of Tokyo, JAPAN

09:25 - 09:30 Transition Break

Poster Session M1

09:30 - 10:30 Presentations are listed by topic category with their assigned number starting on page 16.

Coffee Break (offline) or join the Daily Quiz Featuring Fluigent

10:30 - 10:45

Join us for a quick quiz hosted by <u>Fluigent</u>. We will use Kahoot! for this quiz, so please install Kahoot! on your smartphone or head over to <u>www.kahoot.it</u> in your web browser. Further instructions available upon joining. Winner will be selected to participate in "Who Wants to be a Millionthaire?" on Friday.

Panel Discussion I

Moderators:

Audrey Bowden, Vanderbilt University, USA

Wouter van der Wijngaart, KTH Royal Institute of Technology, SWEDEN

10:45 - 11:35 **WOMEN IN ACADEMIA**

Sabeth Verpoorte¹, Karen Cheung², and Lingling Shui³

¹University of Groningen, THE NETHERLANDS, ²University of British Columbia, CANADA, and

³South China Normal University, CHINA

Panel Discussion II

Moderators:

Abraham P. Lee, *University of California, Irvine, USA*Bastien Venzac, *University of Twente, THE NETHERLANDS*

10:45 - 11:35 **ETHICS IN SCIENCE**

Claire Ribrault¹, Adam Marcus², Philippa Ross³, and Jun Fudano⁴

¹Ateliers des Jours à Venir, FRANCE, ²Retraction Watch, USA, ³Royal Society of Chemistry, UK, and ⁴Waseda University, JAPAN

Industrial Stage 1

Session Chairs

Sally Peyman, *University of Leeds, UK* Shoji Takeuchi, *University of Tokyo, JAPAN*

10:45 - 11:10 1a - Zurich Instruments AG

FAST IMPEDANCE SPECTROSCOPY FOR CHARACTERIZATION AND COUNTING

11:10 - 11:35 1b - microfluidic ChipShop GmbH

WHY ISN'T ELON MUSK DOING MICROFLUIDICS?

Industrial Stage 2

Session Chairs

Daniel Citterio, *Keio University, JAPAN* Mei He, *University of Florida, USA*

10:45 - 11:10 2a – Newormics LLC

VIVOCHIP: HIGH-CONTENT ANALYSIS OF DISEASE MODELS AND TOXICOLOGY STUDIES USING C. ELEGANS

11:10 - 11:35 2b – Biond Solutions B.V.

NOURISHING, STIMULATING AND MONITORING CELLS WITH MICROELECTRONICS

11:35 - 11:40 Transition Break

Poster Session M2

11:40 - 12:40 Presentations are listed by topic category with their assigned number starting on page 16.

12:40 **Adjourn for the Day**

Day 2 - Tuesday, October 6

Plenary Speaker Presentation II

Session Chairs

Nicole Pamme, University of Hull, UK

Wouter van der Wijngaart, KTH Royal Institute of Technology, SWEDEN

08:00 - 09:00

TP-02 COVID-19: CHANGING DIRECTIONS OF A PERFECT STORM

Herman Goossens

University of Antwerp, BELGIUM

09:00 - 09:05 Transition Break

09:05 - 09:35 **Speaker Corner with Herman Goossens**

Poster Session T3

Presentations are listed by topic category with their assigned number starting on page 16. 09:05 - 10:05

Coffee Break (offline) or join one of the Daily Quizzes featuring RAN Biotechnologies and Zurich Instruments

Join us for a quick quiz hosted by RAN Biotechnologies and Zurich Instruments. We will use Kahoot! for 10:05 - 10:20 this quiz, so please install Kahoot! on your smartphone or head over to www.kahoot.it in your web browser. Further instructions available upon joining. Winner will be selected to participate in "Who Wants to be a Millionthaire?" on Friday.

Plenary Speaker Presentation III

Session Chairs

Don DeVoe, University of Maryland, College Park, USA Joel Voldman, Massachusetts Institute of Technology (MIT), USA

10:20 - 11:20

TP-03 CHEMICAL SYNTHESIS ENABLED BY MICROFLUIDICS, AUTOMATION, AND MACHINE LEARNING

Klavs F. Jensen

Massachusetts Institute of Technology, USA

11:20 - 11:25 Transition Break

Speaker Corner with Klavs F. Jensen 11:25 - 11:55

Poster Session T4 Presentations are listed by topic category with their assigned number starting on page 16. 11:25 - 12:25

12:25 - 12:30 Transition Break

Shark Tank

Moderators

Luc Bousse, Kryptos Biotechnologies, USA Michelle Khine, University of California, Irvine, USA Sumita Pennathur, University of California, Santa Barbara, USA

12:30 - 13:30

Panel of Judges

Don Arnold, Veristad, USA

Holger Becker, microfluidic ChipShop, GERMANY

David Cohen, Marker AG, USA

Yolanda Fintschenko, FounderTraction, USA

JD Harriman, Foundation Law Group, USA

Dirk Heckel, DH Diagnostics LLC, a Danaher Company, USA

Carl Meinhart, University of California, Santa Barbara, USA

Tomoko Minagawa, Global Brain Corporation, JAPAN

Josh Molho, Milo at ProteinSample, USA

Akhil Saklecha, Cleveland Clinic Ventures, USA

13:30 **Adjourn for the Day**

Erez Podoly, MightyGate, USA

Day 3 - Wednesday, October 7

Keynote Presentation I

Session Chairs

Kazuma Mawatari, University of Tokyo, JAPAN Fan-Gang Tseng, National Tsing Hua University, TAIWAN

08:00 - 08:30

WK-01

LIQUID MARBLE BASED DIGITAL MICROFLUIDICS: FUNDAMENTAL PHYSICS AND APPLICATIONS

<u>Nam-Trung Nguyen</u>, Chin Hong Ooi, Raja Vadivelu, Kamalalayam Rajan Sreejith, Jing Jin, Nhat-Khuong Nguyen, and Pradip Singha *Griffith University*, *AUSTRALIA*

Keynote Presentation II

Session Chairs

Stephanie Descroix, *Institut Curie CNRS, FRANCE*Jacqueline Linnes, *Purdue University, USA*

08:00 - 08:30

WK-02

ENGINEERING AND MEASURING SYSTEMIC MULTI-ORGAN INTERACTIONS FOR TRANSLATIONAL APPLICATIONS

Lor Huai Chong², Hsih Yin Tan², Louis Ong^{1,2}, Christopher Tostado², and <u>Yi-Chin Toh</u>¹ *Queensland University of Technology, AUSTRALIA and ²National University of Singapore, SINGAPORE*

Keynote Presentation III

Session Chairs

Ian Papautsky, University of Illinois, Chicago, USA Hongkai Wu, Hong Kong University of Science and Technology, HONG KONG

08:00 - 08:30

WK-03

INKJET-BASED HIGH THROUGHPUT SINGLE CELL DISPENSING

Karen C. Cheung

University of British Columbia, CANADA

Keynote Presentation IV

Session Chairs

Hugh Fan, *University of Florida, USA* Chang-Soo Lee, *Chungnam National University, KOREA*

08:00 - 08:30

08:35 - 09:05

WK-04

MICROFLUIDICS FOR LIQUID BIOPSY

Chao Liu, Fei Tian, and Jiashu Sun

National Center for Nanoscience and Technology, CHINA

08:30 - 08:35 Transition Break

Speaker Corners

Nam-Trung Nguyen, Yi-Chin Toh, Karen C. Cheung, and Jiashu Sun

Poster Session W5

08:35 - 09:35 Presentations are listed by topic category with their assigned number starting on page 16.

09:35 - 09:40 Transition Break

Panel Discussion III

Moderators:

Yi Chin Toh, Queensland University of Technology, AUSTRALIA Wouter van der Wijngaart, KTH Royal Institute of Technology, SWEDEN

09:40 - 10:30 ADVICE FOR EARLY CAREERS IN ACADEMIA

Albert van den Berg¹, Maria Tenje², Joel Voldman³, Jacqueline Linnes⁴, Yoon-Kyoung Cho⁵, and Ya-Yu Chiang⁶

¹University of Twente, THE NETHERLANDS, ²Uppsala University, SWEDEN, ³Massachusetts Institute of Technology, USA, ⁴Purdue University, USA, ⁵Ulsan National Institute of Science and Technology (UNIST), KOREA, and ⁶National Chung-Hsing University, TAIWAN

Panel Discussion IV

Moderators:

Aaron Wheeler, *University of Toronto, CANADA*Monica Brivio, *Micronit Microtechnologies, THE NETHERLANDS*

09:40 - 10:30 **WOMEN IN INDUSTRY**

Leanna Levine¹, Alissa Fitzgerald², Claudia Gaertner³, France Hamber⁴, Mika Mizunuma⁵, and Hong Ya Ying⁶

¹A-Line, USA, ²A.M. Fitzgerald & Associates, USA, ³microfluidic ChipShop, GERMANY,

⁴Fluigent, FRANCE, ⁵CRAIF, JAPAN, and ⁶Shenzhen Shineway Technology Corp., HONG KONG

Industrial Stage 3

Session Chairs

Joan Bienvenue, *University of Virginia, USA* Kevin Nichols, *Global Health Labs, USA*

09:40 - 10:05 3a – Springer Nature

BOOK PUBLISHING @ SPRINGER NATURE

10:05 - 10:30 3b – Fluigent in Partnership with BEOnChip

Fluigent/ BEOnChip: A STRATEGIC PARTNERSHIP TO BETTER ADDRESS THE NEEDS OF THE MULTIDISCIPLINARY FIELD OF ORGAN ON CHIP

Industrial Stage 4

Session Chairs

Cullen Buie, Massachusetts Institute of Technology, USA Rebecca Pompano, University of Virginia, USA

09:40 - 10:05 4a – HiComp Microtech (Suzhou) Co., Ltd.

CHALLENGES AND SOLUTIONS FOR NEW DIAGNOSTIC CONSUMABLE MANUFACTURING

10:05 - 10:30 4b – Heidelberg Instruments

CHALLENGES AND SOLUTIONS FOR NEW DIAGNOSTIC CONSUMABLE MANUFACTURING

Coffee Break (offline) or join the Daily Quiz featuring Emulseo

10:30 - 10:45

Join us for a quick quiz hosted by <u>Emulseo</u>. We will use Kahoot! for this quiz, so please install Kahoot! on your smartphone or head over to <u>www.kahoot.it</u> in your web browser. Further instructions available upon joining. Winner will be selected to participate in "Who Wants to be a Millionthaire?" on Friday.

Poster Session W6

10:45 - 11:45 Presentations are listed by topic category with their assigned number starting on page 16.

11:45 - 11:50 Transition Break

Plenary Speaker Presentation IV

Session Chairs

Hang Lu, Georgia Institute of Technology, USA Jonas Tegenfeldt, Lund University, SWEDEN

11:50 - 12:50

WP-04 SKIN-INSPIRED MATERIALS, SENSORS AND APPLICATIONS

Zhenan Bao

Stanford University, USA

12:50 - 12:55 Transition Break

12:55 - 13:25 **Speaker Corner with Zhenan Bao**

13:25 **Adjourn for the Day**

Day 4 - Thursday, October 8

Plenary Speaker Presentation V

Session Chairs

Yoon-Kyoung Cho, Ulsan National Institute of Science and Technology (UNIST), KOREA Amy Herr, University of California, Berkeley, USA

08:00 - 09:00

ThP-05 BIOCOMPATIBLE INTERFACES OF NANOSTRUCTURED POLYMER FOR ADVANCED MEDICAL AND HEALTHCARE DEVICES

Madoka Takai

University of Tokyo, JAPAN

09:00 - 09:05 Transition Break

09:05 - 09:35 Speaker Corner with Madoka Takai

Poster Session Th7

09:05 - 10:05 Presentations are listed by topic category with their assigned number starting on page 16.

Coffee Break (offline) or join the Daily Quiz featuring Nanoscribe GmbH

Join us for a quick quiz hosted by <u>Nanoscribe GmbH</u>. We will use Kahoot! for this quiz, so please install Kahoot! on your smartphone or head over to <u>www.kahoot.it</u> in your web browser. Further instructions available upon joining. Winner will be selected to participate in "Who Wants to be a Millionthaire?" on Friday.

Panel Discussion V

Moderators:

Michinao Hashimoto, Singapore University of Technology and Design, SINGAPORE Agnieszka Zuchowska, University of Twente, THE NETHERLANDS

10:20 - 11:10 PARENTING IN SCIENCE AND WORK-LIFE BALANCE

Agnes Tixier-Mita¹, Yoshio Mita¹, Yong Zeng², Mei He², Jonas Tegenfeldt³, and Christelle Prinz³

¹University of Tokyo, JAPAN, ²University of Florida, USA, and ³Lund University, SWEDEN

Panel Discussion VI

Moderators:

Yi Chin Toh, *Queensland University of Technology, AUSTRALIA*Daniel Citterio, *Keio University, JAPAN*

10:20 - 11:10 STUDENTS AND POSTDOCS STUDYING ABROAD

Petra Dittrich¹, Gaspard Pardon², Dino Di Carlo³, Darius Rackus¹ Anderson Shum⁴, and Christopher Tostado⁵

¹ETH Zürich, Basel, SWITZERLAND, ²Stanford University, USA, ³University of California, Los Angeles, USA, ⁴Hong Kong University, HONG KONG, and ⁵Genome Institute of Singapore, SINGAPORE

Industrial Stage 5

Session Chairs

Ya-Yu Chiang, National Chung Hsing University, TAIWAN John Oakey, University of Wyoming, USA

10:20 - 10:45 5a – Jobst Technologies GmbH

NANO/ MICRO FLOW SYSTEMS, AND BIOSENSORS

10:45 – 11:10 5b – PreciGenome LLC

A TOOL BOX FOR MICROFLUIDIC SYSTEM INTEGRATION AND ITS APPLICATIONS

Industrial Stage 6

Session Chairs

Axel Guenther, *University of Toronto, CANADA* Tiina Sikanen, *University of Helsinki, FINLAND*

10:20 - 10:45 6a – Vision Research, AMETEK

HIGH-SPEED IMAGING SOLUTIONS FOR IMAGE CYTOMETRY

10:45 - 11:10 6b – STRATEC Consumables GmbH

COLLABORATION BY DESIGN – HOW TO INTEGRATE PARTNERS IN THE DEVELOPMENT AND MANUAFCTURING OF NEXT GENERATION DIAGNOSTICS

11:10 - 11:15 Transition Break

Poster Session Th8

11:15 - 12:15 Presentations are listed by topic category with their assigned number starting on page 16.

12:15 - 12:20 Transition Break

Keynote Presentation V

Session Chairs

Stephen Jacobson, *Indiana University, USA* Marcel Utz, *University of Southampton, UK*

12:20 - 12:50

ThK-05 EMERGING WATER TREATMENT TECHNOLOGIES

<u>Matthew E. Suss</u>, Shada Abu Khalla, Imri Atlas, Eric Guyes, and Amit Shocron *Technion - Israel Institute of Technology, ISRAEL*

Keynote Presentation VI

Session Chairs

Katherine Elvira, *University of Victoria, CANADA* Han Wei Hou, *Nanyang Technological University, SINGAPORE*

12:20 - 12:50

ThK-06 NANOSTRUCTURES FOR PROBING AND TRANSFECTING LIVING CELLS

Christelle N. Prinz

Lund University, SWEDEN

Keynote Presentation VII

Session Chairs

Lourdes Basabe, *University of the Basque Country and IKERBASQUE*, *SPAIN*Charles Henry, *Colorado State University*, *USA*

12:20 - 12:50

ThK-07

EXPANDING THE (i)SIMPLE MICROFLUIDIC TOOLBOX TOWARDS ADVANCED DIAGNOSTICS AND THERAPEUTICS

Dries Vloemans, Lorenz Van Hileghem, Henry Ordutowski, Dragana Spasic, Francesco Dal Dosso, and <u>Jeroen Lammertyn</u> *KU Leuven, BELGIUM*

Keynote Presentation VIII

Session Chairs

Govind Kaigala, IBM Research, Zurich, SWITZERLAND

Darwin Reyes, National Institute of Standards and Technology (NIST), USA

12:20 - 12:50

ThK-08

SQUEEZING DNA IN NANOCHANNELS

Kevin D. Dorfman

University of Minnesota, USA

12:50 - 12:55 Transition Break

12:55 – 13<u>:25</u>

Speaker Corners

Matthew E. Suss, Christelle N. Prinz, Jeroen Lammertyn, and Kevin D. Dorfman

13:25 **Adjourn for the Day**

Day 5 - Friday, October 9

Plenary Speaker Presentation VI

Session Chairs

Petra Dittrich, ETH Zürich, Basel, SWITZERLAND Séverine Le Gac, University of Twente, THE NETHERLANDS

08:00 - 09:00

FP-06 WATER-REPELLENT MATERIALS: A FEW TRICKS WE LEARNT FROM NATURE, AND

BEYOND

David Quéré

ESPCI-Paris, PSL Research University, FRANCE

09:00 - 09:05 Transition

09:05 – 09:35 Speaker Corner with David Quéré

Analytical Chemistry **Young Innovator Award and Presentation**

09:05 - 09:25 BUILDING SYNTHETIC HUMAN EMBRYO-LIKE STRUCTURES

Jianping Fu

University of Michigan, Ann Arbor, USA

Lab on a Chip and Dolomite Pioneers of Miniaturization Lectureship Award and Presentation

09:25 - 09:45 CLINICAL TRANSLATION OF MICROFLUIDIC SYSTEMS AND LESSONS LEARNED FROM THE COVID-19 PANDEMIC

Wilbur A. Lam^{1,2}

¹Emory University, USA and ²Georgia Technical University, USA

09:45 - 09:50 Transition

Who Wants to be a Millionthaire?

Moderator

Darius Rackus, ETH Zürich, Basel, SWITZERLAND

09:50 - 10:50

Join us for "Who Wants to be a Millionthaire?", the very first MicroTAS gameshow! Twelve contestants will compete in rounds of trivia, games of skill, and silly activities all for a chance to win one free registration to MicroTAS 2021 in Palm Springs. Contestants will be selected through participation in the daily quizzes. Two lucky attendees will also have the chance to enter. There will be lots of audience participation, so join in for a little bit of fun at the end of this week!

10:50 - 11:05 **Coffee Break (offline)**

Award Ceremony

Session Chairs

Stephanie Descroix, *Institut Curie CNRS*, *FRANCE* Thomas Gervais, *Polytechnique Montréal*, *CANADA*

Je-Kyun Park, Korea Advanced Institute of Science and Technology (KAIST), KOREA

11:05 – 12:15 CHEMINAS - Young Researcher Poster Awards

Lab on a Chip - Widmer Poster Award

IMT Masken und Teilungen AG - Microfluidics on Glass Poster Award

Sensors (MDPI) - Outstanding Sensors and Actuators, Detection Technologies Poster Award National Institute of Standards and Technology (NIST) and Lab on a Chip - Art in Science Award

Micromachines (MDPI) and CBMS - Flash Poster Presentation Awards

Biomicrofluidics (AIP) - Best Paper Awards

Closing Remarks

12:15 MicroTAS 2020 Conference Chairs

Séverine Le Gac, *University of Twente, THE NETHERLANDS* Hang Lu, *Georgia Institute of Technology, USA*

12:35 Conference Adjourns

POSTER PRESENTATIONS

M1	_	Monday, October 5	09:30 - 10:30	M2 -	Monday, October 5	11:40 - 12:40
T3	_	Tuesday, October 6	09:05 - 10:05	T4 –	Tuesday, October 6	11:25 - 12:25
W5	_	Wednesday, October 7	08:35 - 09:35	W6 -	Wednesday, October 7	10:45 - 11:45
Th7	_	Thursday, October 8	09:05 - 10:05	Th8 –	Thursday, October 8	11:15 - 12:15

Classification Chart

(last character of poster number)

a	Fundamentals in Microfluidics and Nanofluidics
b	Micro- and Nanoengineering
c	Sensors and Detection Technologies
d	Integrated Microfluidic Platforms
e	Cells, Organisms and Organs on a Chip
f	Diagnostics, Drug Testing & Personalized Medicine
g	Other Applications of Microfluidics

a - Fundamentals in Microfluidics and Nanofluidics

Electrokinetic Phenomena

M2-201.a AN ELECTROKINETIC-BASED LARGE VOLUME CONCENTRATOR FOR ULTRA-LOW ABUNDANT TARGET DETECTION

Hyukjin J. Kwon, Bryan Lenneman, Timothy Lu, Kyungyong Choi, and Jongyoon Han *Massachusetts Institute of Technology, USA*

T3-301.a CHARACTERIZING SINGLE SINONASAL SQUAMOUS CELL CARCINOMA USING DI-ELECTROPHORESIS AND ELECTROROTATION

Thao N.P. Mai¹, Sakina Bensalem¹, Bénédicte Thiebot², Philippe Manivet³, Juan Pelta², and Bruno Le Pioufle¹ Ecole Normale Superieure de Paris-Saclay, FRANCE, ²Université Paris-Saclay, Université Evry, FRANCE, and ³University of Paris 10, FRANCE

T4-401.a CONTROLLING AC-ELECTROOSMOTIC VORTEX FLOWS BY SHAPING THE CHANNEL CROSS SECTION

Christina Tiflidis 1,2 , Eiko Westerbeek 1,2 , Koen F.A. Jorissen 2 , Wouter Olthuis 2 , Jan Eijkel 2 , and Wim De Malsche 1

¹Vrije Universiteit Brussel, BELGIUM and ²University of Twente, THE NETHERLANDS

W5-501.a DIELECTROPHORETIC EQUILIBRIUM OF COMPLEX PARTICLES

Tom Elkeles¹, Pablo Garcia-Sanchez², Wu Yue¹, Antonio Ramos², and Gilad Yossifon¹ *Technion – Israel Institute of Technology, ISRAEL and ²Universidad de Sevilla, SPAIN*

W6-601,a ELECTROKINETIC WALL EFFECT MECHANISMS AND APPLICATIONS

Jason P. Beech, Bao Dang Ho, Oskar Ström, and Jonas O. Tegenfeldt *Lund University*, *SWEDEN*

Th7-701.a N-DEP ENHANCED LATERAL DISPLACEMENT IN DLD DEVICE TO FOR HIGH EFFICIENT CELL SORTING

Chia-Hsin Chang¹ and Fan-Gang Tseng^{1,2}

¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

a - Fundamentals in Microfluidics and Nanofluidics

Droplet Microfluidics

M1-102.a A NOVEL PARTITIONING PLATFORM TOWARDS THE LOW-COST, RAPIDLY DEPLOYABLE, DIGITAL DETECTION OF SARS-COV-2

Maria Alvarez Amador, Yuhe Jiang, Ling Li, and Eric Brouzes

Stony Brook University, USA

M1-103.a DEFORMABILITY-BASED MICROFLUIDIC MICRODROPLET SORTING AS A SCREENING METHOD FOR SINGLE AGAROLYTIC BACTERIAL CELLS

Mikihisa Muta¹, Kai Saito¹, Ryo Iizuka¹, Wataru Kawakubo², Dong Hyun Yoon², Mei Ito³, Yuji Hatada³, Tetsushi Sekiguchi², Shuichi Shoji², and Takashi Funatsu¹

¹University of Tokyo, JAPAN, ²Waseda University, JAPAN, and ³Saitama Institute of Technology, JAPAN

M1-104.a ENDOTHELIAL-CELL SPROUTING ASSAY WITH MULTIPLE INTERACTING SEEDS AS A PLATFORM TO STUDY ANGIOGENESIS

Katarzyna Rojek and Jan Guzowski Polish Academy of Sciences, POLAND

M1-105.a IMAGE ANALYSIS EXPLORATION: CASE FOR DROPLET MICROFLUIDICS

Immanuel Sanka, Simona Bartkova, Pille Pata, Olli-Pekka Smolander, and Ott Scheler *Tallinn University of Technology, ESTONIA*

M1-106.a PARALLEL DROPLET GENERATION OF LINEAR CONCENTRATION GRADIENT FOR ANTIMICROBIAL SUSCEPTIBILITY TESTING OF ESCHERICHIA COLI 0157:H7

Jae Seong Kim¹, Byungjin Lee¹, Heon-Ho Jeong², Dong-Ho Kim¹, Kyoung Han Kim¹, and Chang-Soo Lee¹ *Chungnam National University, KOREA and ²Chonnam National University, KOREA*

M1-107.a TOWARDS HIGH-THROUGHPUT SCREENING FOR DRUG DISCOVERY IN MULTI SPLITTING AND MERGING SYSTEM USING MICROVALVES

Sagar N. Agnihotri^{1,2}, Mohammad Reza Raveshi¹, Rajneesh Bhardwaj², and Adrian Neild¹ *Monash University, AUSTRALIA and ²Indian Institute of Technology, Bombay (IIT), INDIA*

M2-202.a A SAMPLE INJECTION INTERFACE OF MASS SPECTROMETRY UTILIZING FEMTOLITER-DROPLET SHOOTER BY MICROFLUIDICS

Yuto Takagi¹, Yutaka Kazoe², and Takehiko Kitamori^{1,3}

¹University of Tokyo, JAPAN, ²Keio University, JAPAN, and ³National Tsing Hua University, TAIWAN

M2-203.a DROPLET GENERATOR IN A SINGLE TUBE FOR DNA AMPLIFICATION

Shaw-Hwa Parng, Ping-Jung Wu, Yu-Yin Tsai, Ruey-Shyan Hong, and Su-Jan Lee *Industrial Technology Research Institute, TAIWAN*

M2-204.a FACILE EVAPORATION INDUCED ON SURFACE MANIPULATION OF AQUEOUS DROPLETS AND ITS APPLICATION IN BIOLOGICAL CARGO TRANSPORT

Butunath Majhy and Ashis K. Sen *Indian Institute of Technology, Madras, INDIA*

M2-205.a MANIPULATION OF DROPLETS IN NON-NEWTONIAN FLUID

Shamik Hazra¹, Sushanta K. Mitra², and Ashis Kumar Sen¹

¹Indian Institute of Technology, Madras, INDIA and ²University of Waterloo, CANADA

M2-206.a PERIODIC CONCENTRATION-POLARIZATION BASED FORMATION OF BIOMOLECULE **PRECONCENTRATION**

Sinwook Park, Ramadan Abu-Rjal, Keren Buchnik, Yechezkel Kashi, and Gilad Yossifon Technion – Israel Institute of Technology, ISRAEL

T3-302.a ACTIVE GENERATION OF FEMTOLITER DROPLET IN MICROFLUIDICS USING INKJET **NOZZLE**

Dege Li¹, Yi Cao¹, Bingfang Huang¹, Chao Zheng¹, Yonghong Liu¹, and Yanzhen Zhang^{1,2} ¹China University of Petroleum (East China), CHINA and ²Swinburne University of Technology, AUSTRALIA

T3-303.a DROPLET GENERATORS COMMUNICATION FOR A HIGH THROUGHPUT PRODUCTION Ilyesse Bihi, Pierre Gelin, and Wim De Malsche

Vrije Universiteit Brussel, BELGIUM

FAST DROPLET ENRICHMENT USING SPONTANEOUS EMULSIFICATION T3-304.a

Piangrawee Santivongskul¹, Mao Fukuyama^{1,2}, and Akihide Hibara¹ ¹Tohoku University, JAPAN and ²Japan Science and Technology Agency (JST), JAPAN

MICRO-MAGNETIC-TWEEZERS: A TOOL FOR BIOSEPARATION IN SUB-NANOLITER T3-305.a DROPLETS

Simon Dumas, Mathilde Richerd, Marco Serra, and Stéphanie Descroix Institut Curie, FRANCE

PRODUCTION OF MONODISPERSE CAPSULES FOR CONTROLLED SPORE RELEASE T3-306.a

Iwona Ziemecka¹, Ilyesse Bihi¹, Pierre Gelin¹, Guy Van Assche², Suzy Vaupre¹, Roberto Teixeira¹, Dominique Maes¹, and Wim De Malsche¹

¹Vrije Universiteit Brussel, BELGIUM and ²Devan Chemicals NV, BELGIUM

T4-402.a AUTOMATED MICROFLUIDIC DROPLET GENERATION AND MERGING TO RESOLVE DYNAMICS OF UPTAKE AND SECRETION IN WHITE ADIPOSE TISSUE (WAT)

Nan Shi, Md Moniruzzaman, Yvette Kayirangwa, and Christopher J. Easley Auburn University, USA

T4-403.a DROPLET MICROFLUIDIC BASED METHOD FOR IN-SITU CALIBRATION AND DETERMINATION OF RECOVERY RATE OF MICRODIALYSIS

Gareth W.H. Evans¹, Jameelah Salahuddin¹, Wahida T. Bhuiyan¹, Brett Warren², and Xize Niu^{1,2} ¹University of Southampton, UK and ²SouthWestSensor Ltd., UK

T4-404.a GENERATION OF AOUEOUS-DROPLET-FILLED HYDROGEL FIBERS AS ORGANOIDS CARRIES USING ALL-IN-WATER MICROFLUIDIC SYSTEM

Hui Wang, Hai-Tao Liu, Ya-Qing Wang, Meng-Qian Zhao, Wen-Wen Chen, and Jian-Hua Qin Chinese Academy of Sciences, CHINA

T4-405.a MICROFLUIDIC GENERATION OF WATER-IN-WATER-IN-WATER(-IN-WATER) DOUBLE AND TRIPLE EMULSIONS

Morteza Jeyhani^{1,2}, Risavarshni Thevakumaran^{1,2}, Niki Abbasi^{1,2}, Dae Kun Hwang^{1,2}, and Scott S. H. Tsai^{1,2} ¹Ryerson University, CANADA and ²St. Michael's Hospital, CANADA

REAL-TIME IMAGE-BASED DROPLET MEASUREMENT T4-406.a

Sepehr Elahi¹, Ali Kalantarifard¹, Fatemeh Kalantarifard², and Caglar Elbuken^{1,3} ¹Bilkent University, TURKEY, ²Bogazici University, TURKEY, and ³University of Oulu, FINLAND

BINARY CONSTRICTIONS, TIP ELONGATION AND DUTY CYCLE: SHAPE BASED W5-502.a MECHANISMS FOR LABEL-FREE DETECTION IN DROPLETS

Afreen Fatima and Amar S. Basu Wayne State University, USA

W5-503.a DROPLET MICROFLUIDIC PLATFORM FOR INTRACELLULAR PHASE SEPARATION EXPERIMENTS

Katherine Chan^{1,2}, Maryam Navi^{1,2}, Jennifer Kieda^{1,2}, and Scott S.H. Tsai^{1,2}

¹Ryerson University, CANADA and ²St. Michael's Hospital, CANADA

W5-504.a GENERATION OF COMPLEX EMULSIONS USING MONOLITHIC, DUAL- MATERIAL 3D-PRINTED MICROFLUIDIC DEVICES

Jin Li, Pantelitsa Dimitriou, Oliver Castell, and David Barrow *Cardiff University*, *UK*

W5-505.a MOLECULAR REORIENTATION OF CHOLESTERIC DROPLET INDUCED BY STRAIN FOR FLEXIBLE SENSING APPLICATION

Shuting Xie, Mingliang Jin, Ruizhi Yang, Guofu Zhou, and Lingling Shui South China Normal University, CHINA

W5-506.a SELF-EMULSIFICATION IN LIQUID CRYSTAL DROPLETS

Ruizhi Yang, Yueming Deng, Shuting Xie, Qi An, and Lingling Shui South China Normal University, CHINA

W6-602.a COMPUTER VISION APPLIED TO MEMBRANE DISPLACEMENT TRAP ARRAYS FOR AUTOMATED DROPLET CONTROL AND MANIPULATION

Michael Yeh^{1,2}, Jason Harriot¹, Supriya Padmanabhan¹, and Don L. DeVoe¹

¹University of Maryland, College Park, USA and ²National Cancer Institute, USA

W6-603.a DROPLET SQUEEZING FOR HIGHLY EFFECTIVE GENE DELIVERY INTO HUMAN T LYMPHOCYTES

Byeongju Joo, Hasung Lee, Seung Gyu Yun, and Aram Chung Korea University, KOREA

W6-604.a GENERATION OF SPHEROIDS USING AN AQUEOUS TWO-PHASE SYSTEM DROPLET MICROFLUIDIC PLATFORM

Jennifer Kieda^{1,2}, Morteza Jeyhani^{1,2}, Maryam Navi^{1,2}, Katherine Chan^{1,2}, and Scott S.H. Tsai^{1,2}

¹Ryerson University, CANADA and 2St. Michael's Hospital, CANADA

W6-605.a MONITORING OF AMMONIA IN NATURAL WATERS USING A VERSATILE, PROGRAMMABLE DROPLET MICROFLUIDIC PLATFORM

Wahida Bhuiyan¹, Evanthia Papadoupoulou², Sharon Coleman², Matthew Pearson², Adrian Nightingale¹, Gareth Evans¹, and Xize Niu^{1,2}

¹University of Southampton, UK and ²SouthWestSensor Ltd., UK

W6-606.a SIMULTANEOUS DROPLET FORMATION VIA GRAVITY-INDUCED FLOW WITH IN-SERIES DROPLET GENERATING JUNCTIONS

Khashayar R. Bajgiran, Riad Elkhanoufi, James A. Dorman, and Adam T. Melvin *Louisiana State University, USA*

Th7-702.a CONTINUOUS GENERATION OF CELL-LADEN MICROGELS THROUGH DETERMINISTIC LATERAL DISPLACEMENT ARRAYS

Naotomo Tottori and Takasi Nisisako

¹Kyushu University, JAPAN and ²Tokyo Institute of Technology, JAPAN

Th7-703.a DROPLET-ASSISTED PHASE SEPARATION BY INTEGRATED SILICON ELECTROSPRAY NANO-EMITTER FOR NEUROCHEMICAL SENSING

Yan Zhang, Weihua Shi, Insu Park, Sungho Kim, Christopher Brenden, Hrishikesh Iyer, Prasoon Jha, Rashid Bashir, and Yurii Vlasov

University of Illinois, Urbana-Champaign, USA

Th7-704.a HIGH-THROUGHPUT SORTING OF NANOLITER DROPLETS USING AN ELECTRODE ARRAY WITH A SLANTED MICROCHANNEL

Mun Hong Loo¹, Yuta Nakagawa¹, Akihiro Isozaki^{1,2}, and Keisuke Goda^{1,3,4}

¹University of Tokyo, JAPAN, ²Kanagawa Institute of Industrial Science and Technology, JAPAN,

³University of California, Los Angeles, USA, and ⁴Wuhan University, China

Th7-705.a MONITORING OF REACTION KINETICS THROUGH THE SYNCHRONIZED RELEASE OF LIPOSOMAL CARGO IN DOUBLE EMULSIONS

Ariane Stucki, Petra Jusková, Nicola Nuti, and Petra S. Dittrich

ETH Zürich, Basel, SWITZERLAND

Th7-706.a SPACE-FILLING OPEN MICROFLUIDICS FOR DROPLET COLLECTION: GENERALIZED DESIGN OF FRACTAL HYPERBRANCHED CHANNELS

Hiroyuki Kai

Tohoku University, JAPAN

Th8-801.a A MICROFLUIDIC MAGNETIC EXTRACTOR FOR MAGNETIC BEAD SEPARATION IN DROPLETS

Junyue Chen^{1,2}, Weiliang Shu¹, Ying Tan², Hongtao Feng¹, Yimo Yan², and Yan Chen¹ Chinese Academy of Sciences, CHINA and ²Tsinghua University, CHINA

Th8-802.a CONTROLLED ACTUATION OF SELF-PROPELLED DROPLETS

Loïc Coudron, Clément Lemenu, Kevin Lemaine, Daniel McCluskey, Christabel Tan, Ian Munro, Arne Erik Holdo, Mark Tracey, and Ian Johnston *University of Hertfordshire, UK*

Th8-803.a ELECTROCOALESCENCE OF MICRODROPLETS WITH ACTIVE PAIRING

Kaijian Zhu^{1,2}, Wen Yue¹, and Dahai Ren²

¹China University of Geosciences, CHINA and ²Tsinghua University, CHINA

Th8-804.a HYBRID MICROGELS PRODUCED VIA DROPLET MICROFLUIDICS FOR NANOPARTICLE ENCAPSULATION AND DRUG DELIVERY

Bruna G. Carvalho¹, Thiago B. Taketa¹, Bianca B.M. Garcia², Sang W. Han², and Lucimara G. de la Torre¹ *University of Campinas, BRAZIL and ²São Paulo Federal University, BRAZIL*

Th8-805.a OPTICAL ACCESSIBILITY IMPROVEMENTS FOR THE CHARACTERIZATION OF THE NANOPEDE

Edo A.G. de Kruiff 1 , Chris L. Kennedy 2 , Corentin B.M. Tregouet 3 , Alfons van Blaaderen 2 , Jan C.T. Eijkel 1 , and Mathieu Odijk 1

¹University of Twente, THE NETHERLANDS, ²Utrecht University, THE NETHERLANDS, and ³University of Rennes ¹, FRANCE

Th8-806.a SPRING-POWERED PORTABLE SYRINGE PUMP THAT PROVIDES CONSTANT FLOW RATE

Won Han and Joong Ho Shin

Pukyong National University, KOREA

a - Fundamentals in Microfluidics and Nanofluidics

Digital Microfluidics

M2-207.a ALL-IN-ONE DIGITAL MICROFLUIDIC SYSTEM FOR MOLECULAR DIAGNOSIS BASED ON THE LOOP-MEDIATED ISOTHERMAL AMPLIFICATION

Siyi Hu¹, Chao Yang², Yuhan Jie², Haifei Yang², Yang Su^{1,2}, and Hanbin Ma^{1,2}
¹Chinese Academy of Sciences, CHINA and ²ACXEL TECH LTD, UK

T3-307.a OPEN SURFACE DROPLET MANIPULATION AND MIXING BY FERROFLUID INSTABILITIES

Vahid Nasirimarekani¹, Fernando Benito-Lopez¹, and Lourdes Basabe-Desmonts^{1,2}

¹University of the Basque Country, SPAIN and ²Basque Foundation of Science, IKERBASQUE, SPAINSPAIN

a - Fundamentals in Microfluidics and Nanofluidics

Centrifugal Microfluidics

M1-108.a RELIABLE LIQUID REAGENT HANDLING AND ROTATIONAL RELEASE FOR CENTRIFUGAL SAMPLE-TO-ANSWER AUTOMATION

Yao Lu, Darren McAuley, Rohit Mishra, David Boyle, and Jens Ducrée Dublin City University, IRELAND

M2-208.a VISCOSITY INDEPENDENT FLOW FOR PLANAR CHROMATOGRAPHIC IMMUNOASSAYS BY CENTRIFUGAL MICROFLUIDICS

Daniel M. Kainz^{1,2}, Susanna M. Früh^{1,2}, Tobias Hutzenlaub^{1,2}, Roland Zengerle^{1,2}, and Nils Paust^{1,2} ¹University of Freiburg, GERMANY and ²Hahn-Schickard, GERMANY

T4-407.a AUTOMATED CELL CULTURE AND ACTIVATION ASSAY USING CENTRIFUGAL MICROFLUIDIC PLATFORM

Lidija Malic¹, Liviu Clime¹, Jamal Daoud¹, Abdelrahman Elmanzalawy¹, Ljuboje Lukic¹, Huailo Lee², Yuh-Tyng Tsai², Pei-Shin Jiang², and Teodor Veres¹

¹National Research Council, CANADA and ²Industrial Technology Research Institute, TAIWAN

W5-507.a AUTOMATED LIBRARY PREPARATION FOR NEXT GENERATION SEQUENCING OF IMMUNOGLOBULIN GENE REARRANGEMENTS BY CENTRIFUGAL MICROFLUIDICS

Jacob F. Hess¹, Michaela Kotrová², Silvia Calabrese¹, Tobias Hutzenlaub^{1,3}, Roland Zengerle^{1,3}, Monika Brüggemann², and Nils Paust^{1,3}

¹Hahn-Schickard, GERMANY, ²University Medical Center Schleswig Holstein, GERMANY, and ³University of Freiburg, GERMANY

W6-607.a FULLY INTEGRATED LTA ASSAY ON CENTRIFUGAL MICROFLUIDIC DEVICE

Jungmin Kim^{1,2}, Chi-Ju Kim¹, Jonathan Sabaté del Río¹, and Yoon-Kyoung Cho^{1,2}

¹Ulsan National Institute of Science & Technology (UNIST), KOREA and

²Institute for Basic Science (IBS) < KOREA

Th7-707.a PNEUMATICALLY CONTROLLED DROPLET GENERATION ON A CENTRIFUGAL MICROFLUIDIC PLATFORM

Liviu Clime, Lidija Malic, Luke Lukic, Matthias Geissler, and Teodor Veres *National Research Council, CANADA*

Th8-807.a PURIFICATION OF DNA FRAGMENTS USING PNEUMATIC CONTROL COUPLED TO CENTRIFUGAL MICROFLUIDICS

Daniel Brassard, Jimin Guo, Maxence Mounier, Jason Ferreira, Mojra Janta-Polczynski, and Teodor Veres National Research Council, CANADA

a - Fundamentals in Microfluidics and Nanofluidics

Acousto- and Magnetofluidics

M1-109.a RAPID MUTINODAL ACOUSTIC TRAPPING OF EXTRACELLULAR VESICLES FOR DOWNSTREAM MASS SPECTROMETRY ANALYSIS

Axel Broman, Lotta Happonen, Frida Palm, Oonagh Shannon, Johan Malmström, and Thomas Laurell Lund University, SWEDEN

M2-209.a REDUCING TAYLOR DISPERSION WITH ACOUSTIC STREAMING

Pierre Gelin, Dominique Maes, and Wim De Malsche Vrije Universiteit Brussel, BELGIUM

T3-308.a A SINGLE CELL MANIPULATION TOOL BASED ON GIGAHERTZ ACOUSTIC-STREAMING TWEEZERS

Ke Jin, Yang Yang, Yang Bai, Wei Wei, and Xuexin Duan State Key Laboratory of Precision Measuring Technology & Instruments, CHINA

W5-508.a BINARY PARTICLE ACOUSTOPHORESIS SEPARATION BASED ON NODAL POSITION ADJUSTMENT THROUGH PDMS WALL

Sinan Yigit¹, Song-I Han², Younghak Cho³, and Arum Han²

¹Necmettin Erbakan University, TURKEY, ²Texas A&M University, USA, and ³Seoul National University of Science & Technology, KOREA

W6-608.a FREQUENCY TUNABLE LABEL-FREE SURFACE ACOUSTIC WAVE-BASED FLOW SENSOR

Aurore Quelennec, Jason J. Gorman, and Darwin R. Reyes National Institute of Standards and Technology (NIST), USA

Th7-708.a MOTILITY-BASED SPERM SELECTION USING ACOUSTOFLUIDICS

Junyang Gai, Reza Nosrati, and Adrian Neild *Monash University, AUSTRALIA*

Th8-808.a QUANTIFYING THE ACOUSTIC FIELD IN A MICROCHANNEL USING MICROSWIMMERS AS MEASUREMENT PROBES

Minji Kim¹, Rune Barnkob², and J. Mark Meacham¹

¹Washington University, St. Louis, USA and ²Technical University of Munich, GERMANY

a - Fundamentals in Microfluidics and Nanofluidics

Capillary Microfluidics

M1-110.a MULTILEVEL PASSIVE MICROFLUIDICS FOR ELECTROCHEMICAL BIOSENSORS

Pooya Azizian^{1,2}, Adrián Ortega¹, Jordi Ricart¹, Jasmina Casals-Terré², and Joan M. Cabot¹ *Leitat Technological Center, SPAIN and ²Technical University of Catalonia, SPAIN*

M2-210.a MULTISCALE MODELLING AND COMPUTATIONAL DESIGN OF FLUID FLOW AND MASS TRANSPORT IN 3D PRINTED LAB-ON-CHIPS

Agnese Piovesan, Bart Dequeker, Ruben Dochy, Cesar Parra Cabrera, Clement Achille, Rob Ameloot, Pieter Verboven, and Bart Nicolai *KU Leuven, BELGIUM*

T3-309.a 3D PRINTED AXISYMMETRIC FLOW-FOCUSING DEVICE USING FUSED SILICA CAPILLARY TUBES

Keisuke Sugahara and Shoji Takeuchi *University of Tokyo, JAPAN*

T3-310.a OPEN-CHANNEL CAPILLARY TREES AND CAPILLARY PUMPING

Jing J. Lee, Jean Berthier, Kathleen E. Kearney, Erwin Berthier, and Ashleigh B. Theberge *University of Washington, USA*

T4-409.a 3D-PRINTING AND COMPUTATIONAL FLUID DYNAMICS 'MEET' PAPER-BASED MICROFLUIDICS FOR ENHANCED FLOW CONTROL IN DIFFUSIVE SENSORS

Joan Antoni López, Pau Fernández, Pouya Mehdrel, and Jasmina Casals-Terré *Technical University of Catalonia, SPAIN*

T4-410.a POLY(N-ISOPROPYL ACRYLAMIDE) COATING OF MICROCHANNELS AND BACTERIAL SAMPLE LOADING VIA CAPILLARY-DRIVEN FLOW

Sammer-ul Hassan¹, Steve Carter², Sehaj Singh², Edward Dyson², Stephen Rimmer², and Xunli Zhang¹ *University of Southampton, UK and ²University of Bradford, UK*

W5-509.a CAPILLARY-DRIVEN LOADING OF HriCFP EXPRESSING ESCHERICHIA COLI INTO MICROCHANNELS

Ahmed Donia¹, Salma Saeed¹, Aamira Tariq¹, Zobia Noreen¹, Habib Bokhari¹, Xunli Zhang², and Sammer-ul Hassan²

¹Comsats University Islamabad, PAKISTAN and ²University of Southampton, UK

W5-510.a PASSIVE FLOW CONTROL IN A LAMINATION-BASED CAPILLARY-DRIVEN MICROFLUIDIC DEVICE

Ilhoon Jang^{1,2} and Charles S. Henry²

¹Hanyang University, KOREA and ²Colorado State University, USA

W6-609.a DIGITAL MANUFACTURING OF FUNCTIONAL AUTONOMOUS CAPILLARIC CIRCUITS USING HYDROPHILIC RESINS AND A 3D PRINTER

Ahmad Sohrabi Kashani, Vahid Karamzadeh, Oriol Ymbern Llorens, Andy Ng, and David Juncker *McGill University, CANADA*

W6-610.a SIGNAL AMPLIFICATION IN A LATERAL FLOW ASSAY ENABLED BY A CAPILLARY VALVE AND SELF-ACTUATING ELEVATOR VALVE

Caitlin E. Anderson, Joshua D. Bishop, Andrew K. Miller, Benjamin D. Grant, Toan Huynh, David M. Cate, Bernhard H. Weigl, and Kevin P. Nichols *Intellectual Ventures Laboratory, USA*

Th7-709.a INCORPORATING FLOW CONTROL FUNCTIONALITY IN MICROFLUIDIC PAPER-BASED ANALYTICAL DEVICES USING PLASMA PROCESSES

Nikhil Raj, Victor Breedveld, and Dennis W. Hess Georgia Institute of Technology, USA

Th7-710.a THREAD AS A PRECISE SAMPLING AND DELIVERY PLATFORM FOR IMPLANTABLE OR INGESTIBLE APPLICATIONS

H. Rezaei Nejad, Aydin Sadeqi, and Sameer Sonkusale *Tufts University, USA*

Th8-809.a LIQUID ATOMIZATION IN PERIODIC ELECTRO-PULSATING MODE. INDIRECT MEASUREMENT OF THE ELECTRIC FIELD ON THE OSCILLATING MENISCUS

Antonio J. Hijano¹, Ignacio G. Loscertales¹, and Francisco J. Higuera²

¹Universidad de Málaga, SPAIN and ²Universidad Politecnica de Madrid, SPAIN

a - Fundamentals in Microfluidics and Nanofluidics

Nanofluidics/Nanofluidic Phenomena

M1-111.a GENERATION OF NANOMETER-SCALE GEOMETRICAL GAS-LIQUID INTERFACES IN HYDROPHILIC/HYDROPHOBIC PATTERNED NANOCHANNELS

Hiroto Kawagishi¹, Shuichi Kawamata¹, and Yan Xu^{1,2}

¹Osaka Prefecture University, JAPAN and ²Japan Science and Technology Agency (JST), JAPAN

M2-211.a INTEGRATED IONIC ELECTRONICS BASED ON HORIZONTALLY-ALIGNED CARBON NANOTUBES

Ran Peng¹, Yueyue Pan¹, Zhi Li², Shuailong Zhang¹, Aaron R. Wheeler¹, Shirley Tang², and Xinyu Liu¹ *University of Toronto, CANADA and ²University of Waterloo, CANADA*

T3-311.a INTEGRATED MICRO- AND NANOFLUIDIC DEVICES FOR REAL-TIME MONITORING OF HEPATITIS B VIRUS CAPSID ASSEMBLY

Michael P. Kappler, Panagiotis Kondylis, Caleb Starr, Adam Zlotnick, and Stephen C. Jacobson *Indiana University, USA*

T4-411.a LATERAL MIGRATION OF DOUBLETS IN UNTREATED WHOLE BLOOD

Jian Zhou and Ian Papautsky

University of Illinois, Chicago, USA

W5-511.a NANOFLUIDIC DEVICE FOR SURFACE CHARGE MEASUREMENT OF NANOPARTICLES USING TUNABLE ELECTROSTATIC LANDSCAPE

Imman I. Hosseini, Zezhou Liu, Walter Reisner, and Sara Mahshid *McGill University, CANADA*

W6-611.a TRANSPORT OF VISCOUS FLUID THROUGH MICRO- AND NANO-POROUS MEDIA

Md Minhajul Islam and D. Jed Harrison *University of Alberta, CANADA*

Th8-810.a A SENSE-REACT-SENSE NANOFLUIDIC SYSTEM FOR PERFORMING REACTIONS ON SINGLE VIRUS CAPSIDS

Mi Zhang, Caleb Starr, Zhongchao Zhao, Adam Zlotnick, and Stephen C. Jacobson *Indiana University, USA*

a - Fundamentals in Microfluidics and Nanofluidics

Modeling/Numerical Simulation

M1-112.a COMPUTATIONAL FLUID DYNAMIC SIMULATION FOR THE STENOSIS MICROFLUIDIC THROMBOSIS MODEL CHARACTERIZATION

Yunduo Charles Zhao¹, Parham Vatankhah¹, Tiffany Goh^{1,2}, and Lining Arnold Ju^{1,2}
¹University of Sydney, AUSTRALIA and ²Heart Research Institute, AUSTRALIA

M1-113.a SHAPE DEPENDENT MODEL-BASED APPROACH FOR ELASTIC MODULI ESTIMATION OF BIOLOGICAL CELLS IN FLOW

Gangadhar Eluru, Ramya Shekhar, and Sai Siva Gorthi *Indian Institute of Science, INDIA*

M2-212.a COMPUTATIONAL MODELLING OF FLOW AND DRUG TRANSPORT IN A MICROFLUIDIC DEVICE FOR SPHEROID CULTURES

Sina Kheiri, Eugenia Kumacheva, and Edmond W.K. Young *University of Toronto, CANADA*

M2-213.a SURFACE TEXTURE MODULATES WALL SLIP IN MICROFLUIDIC FLOWS

Siyu Chen and Joe Fujiou Lo

University of Michigan, Dearborn, USA

T3-312.a CONCENTRATION GRADIENTS INSIDE MICRODROPLETS

Christian F. Chamberlayne, Juan Santiago, and Richard N. Zare *Stanford University, USA*

T3-313.a TOWARD THE CHARACTERIZATION OF COMPLEX MICROVESSEL NETWORKS VIA IN-LINE FLOW RATE SENSING

Michael A. Daniele^{1,2}, Vladimir A. Pozdin³, Patrick Erb^{1,2}, and McKenna Downey¹

¹North Carolina State University, USA, ²University of North Carolina, Chapel Hill, USA, and ³Florida International University, USA

T4-412.a CREATIVE SHAPING OF 2D FLOW AND CONCENTRATION PROFILES IN MICROFLUIDIC CHAMBERS

Etienne Boulais and Thomas Gervais *Polytechnique Montréal, CANADA*

W5-512.a ENHANCING MICROMIXING CAPABILITIES OF FLEXIBLE FLUOROPOLYMER MICROCAPILLARY FILMS WITH 3D PRINTED TEMPLATES: A COMPUTATIONAL FLUID DYNAMICS ANALYSIS

Kirandeep K. Gill¹, Patrick Hester², Pedro Estrela¹, and Nuno M. Reis¹ *University of Bath, UK and* ²*Lamina Dielectrics Ltd., UK*

W6-612.a NUMERICAL SIMULATION AND EXPERIMENTAL ANALYSIS OF INERTIAL CELL FOCUSING IN A CONTRACTION-EXPANSION ARRAY (CEA) MICROCHANNEL

Ali C. Atik, Ender Yıldırım, and Haluk Külah *Middle East Technical University, TURKEY*

Th7-711.a 2D PHASE-FIELD SIMULATION AND EXPERIMENTAL VALIDATION OF DROPLET FORMATION IN A FLOW-FOCUSING JUNCTION

Ali C. Atik, Ender Yıldırım, and Haluk Külah *Middle East Technical University, TURKEY*

Th7-712.a NUMERICAL MODELING OF SEQUENTIAL SEGMENTATION FOR ENHANCEMENT OF MICROMIXING

Ibragim Abu Dagga^{1,2} and Mohamed Abdelgawad¹

¹American University of Sharjah, UAE and ²Khalifa University of Science and Technology, UAE

Th8-811.a BEHAVIOR OF PHASE CHANGE SLURRY IN A MICROCHANNEL

Vikram Soni, Hannah McPhee, Sepehr Saber, Jason Riordon, and David Sinton *University of Toronto, CANADA*

Th8-812.a RESIDENCE TIME DISTRIBUTION IN MICROMIXERS: SCALE-UP EFFECTS

Harrson S. Santana¹ and João L. Silva Jr.²

¹University of Campinas, BRAZIL and ²Federal University of ABC, BRAZIL

a - Fundamentals in Microfluidics and Nanofluidics

Others

M1-114.a HIGH-THROUGHPUT SPERM SORTING BY A FLAT RHEOTAXIS MICROFLUID DEVICE

Suei-Shen Wang¹ and Fan-Gang Tseng^{1,2}

¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

M2-214.a TO STICK OR NOT TO STICK: PREDICTING PARTICLE CAPTURE ON A SURFACE IN A MICROCHANNEL

Donatien Mottin^{1,2}, Florence Razan², Frédéric Kanoufi³, and Marie-Caroline Jullien¹

¹University of Rennes, FRANCE, ²École Normale Supérieure de Rennes, FRANCE, and

³Université de Paris, FRANCE

T3-314.a IMPROVED UNDERSTANDING OF PARTICLE MIGRATION IN SHEAR THINNING VISCOELASTIC FLUID

Shamik Hazra¹, Sushanta K. Mitra², and Ashis Kumar Sen¹

¹Indian Institute of Technology, Madras, INDIA and ²University of Waterloo, CANADA

T4-413.a CONCENTRATION-DEPENDENT LOSS OF CHARGED ANALYTES IN PAPERFLUIDIC DEVICES

Siddhant Jaitpal¹, Priyanka Naik¹, Shashwat Banerjee², and Debjani Paul¹

¹Indian Institute of Technology, Bombay, INDIA and

²Maharashtra Institute of Medical Education and Research Medical College, INDIA

W5-513.a DIFFERENTIAL 3D-VISCOELASTIC FOCUSING OF PARTICLES IN A RECTANGULAR MICROFLUIDIC CHANNEL

Ludovica Barilla, Jian Zhou, Zhangli Peng, and Ian Papautsky *University Illinois, Chicago, USA*

W6-613.a DNA CONCENTRATION WAVE FORMATION IN PILLAR ARRAYS

Oskar E. Ström, Jason P. Beech, and Jonas O. Tegenfeldt *Lund University, SWEDEN*

Th7-713.a EFFECT OF DEAN FLOWS ON SUB-MICRON PARTICLES IN LOW ASPECT RATIO MICROCHANNELS – ANALYSIS OF DFF

Suhanya Duraiswamy¹ and Lin Yue Lanry Yung²

¹Indian Institute of Technology, Hyderabad, INDIA and ²National University of Singapore, SINGAPORE

Th8-813.a EFFECTS OF PARTICLE SIZE AND FLUID ELASTICITY ON ELASTO-INERTIAL MIGRATION IN SPIRAL CHANNEL

Hua Gao, Jian Zhou, and Ian Papautsky *University of Illinois, Chicago, USA*

a - Fundamentals in Microfluidics and Nanofluidics

Industrial Benefactor

M2-215.a LITHOGRAPHY SOLUTIONS FOR MICROFLUIDICS AND BIOTECH

Charles Turk OAI, USA

T3-383.a FROM SURFACTANTS TO HYDROGEL BEADS TO EMULSION TEMPLATING KITS

Robert Lintner, Brian O'Day, Anne-Milda Pu and Roger Nassar RAN Biotechnologies Inc.

a - Fundamentals in Microfluidics and Nanofluidics

Late News

M1-172.a ARRESTED COALESCENCE OF LIQUID MARBLES TRIGGERED BY ELECTROSTATICS

Yage Zhang¹, Chentianyi Yang¹, Shuai Yuan¹, Xiaoxue Yao², and Ho Cheung Shum¹ *University of Hong Kong, HONG KONG and ²Shenzhen University, CHINA*

M1-173.a RECTIFIED AC ELECTROOSMOSIS INDUCED BY SURFACE CONDUCTANCE AROUND INSULATING MICROPOSTS

Victor Calero¹, Raul Fernández-Mateo¹, Pablo García-Sánchez², Antonio Ramos², and Hywel Morgan¹ University of Southampton, UK and ²Universidad de Sevilla, SPAIN

M2-272.a A NOVEL MICROFLUIDIC DEVICE TO FLEXIBLY GENERATE GROOVED MICROFIBERS AS ANISOTROPIC SCAFFOLDS

Meng-Qian Zhao, Hai-Tao Liu, Hui Wang, Ting-Ting Tao, and Jian-Hua Qin *Chinese Academy of Sciences, CHINA*

M2-273.a DIGITAL-WGS: AUTOMATED, HIGHLY EFFICIENT WHOLE-GENOME SEQUENCING OF SINGLE CELLS BY DIGITAL MICROFLUIDICS

Qingyu Ruan¹, Weidong Ruan¹, Xiaoye Lin¹, Zhi Zhu¹, and Chaoyong Yang^{1,2}
¹Xiamen University, CHINA and ²Shanghai Jiao Tong University, CHINA

T3-373.a CELL MANIPULATION VIA ACOUSTIC FORCES IN A SPHERICAL MICROCHAMBER

Bettina Sailer, Rune Barnkob, and Oliver Hayden *Technical University of Munich, GERMANY*

T3-374.a DOUBLE MONOCLONAL DISPLAY FOR HIGHLY EFFICIENT PEPTIDE SCREENING

Junxia Wang, Yuyu Tan, Jiajun Ling, Mingxia Zhang, Wenli Liu, Mengjiao Huang, Jia Song, Ao Li, Yanling Song, Zhi Zhu, and Chaoyong Yang *Xiamen University, CHINA*

T4-473.a HIGH RESOLUTION EXOSOME TYPING METHOD FOR CANCER DIAGNOSIS

Bingqian Lin¹, Lingling Wu², Zhi Zhu¹, Yanling Song¹, and Chaoyong Yang^{1,2}

¹Xiamen University, CHINA and ²Shanghai Jiao Tong University, CHINA

T4-474.a HIGHLY EFFICIENT ACOUSTOPHORETIC SINGLE CELL-SUPERNATANT SEPARATION INSIDE NANOLITER DROPLETS

Michael Gerlt¹, Dominik Haidas², Alexandre Ratschat¹, Philipp Suter¹, Petra Dittrich², and Jürg Dual¹ *ETH Zürich, SWITZERLAND and ²ETH Zürich, Basel, SWITZERLAND*

W5-572.a DYNAMIC FORMATION OF MULTIPLE PRECONCENTRATED MOLECULE PLUGS

Barak Sabbagh¹, Elad Stolovicki², Sinwook Park¹, and Gilad Yossion¹

¹Technion - Israel Institute of Technology, ISRAEL and ²Harvard University, USA

W5-573.a HIGH THROUGHPUT, MOBILE DIGITAL FLUORESCENCE DROPLET ASSAYS USING TIME DOMAIN EXCITATION MODULATION

Zijian Yang, Yasemin Atiyas, and David Issadore *University of Pennsylvania, USA*

W6-674.a MAPPING THE PHASE DIAGRAM OF DNA HYDROGELS WITH DROPLET MICROFLUIDICS

Guilhem Mariette^{1,2}, Nicolas Lobato-Dauzier², Robin Deteix², Mia Zhang², Shu Okumura², Yusuke Sato³, Masahiro Takinoue⁴, Teruo Fujii², and Anthony J. Genot²

¹Ecole Normale Supérieure, FRANCE, ²University of Tokyo, JAPAN and ³Tohoku University, JAPAN, and ⁴Tokyo Institute of Technology, JAPAN

Th7-772.a ACCELERATING THE FINITE-ELEMENT METHOD FOR REACTION-DIFFUSION SIMULATIONS ON GPUs WITH CUDA

Hedi Sellami, Leo Cazenille, Teruo Fujii, Masami Hagiya, Nathanael Aubert-Kato, and Anthony J. Genot *University of Tokyo, JAPAN*

Th7-773.a NOVEL APPROACH FOR ADVANCED PERSONALIZED CANCER TREATMENT

Anna Luise Grab¹, Ramesh Utharala¹, Thorsten Cramer^{2,3}, Julio Saez-Rodrigue⁴, Nicolas Peschke¹, Denes Türei^{1,4}, Wenwei Ma¹, Vida Vafaizdah¹, Federica Eduati⁵, and Christoph Merten^{1,6}

¹European Molecular Biology Laboratory, GERMANY, ²RWTH Aachen, Germany,

³Maastricht University, THE NETHERLANDS, ⁴Faculty of Medicine of Heidelberg, GERMANY,

⁵Eindhoven University of Technology, THE NETHERLANDS, and

⁶Swiss Federal Institute of Technology Lausanne, SWITZERLAND

Th8-871.a VACUUM POUCH MICROFLUIDIC SYSTEM FOR THE APPLICATION OF DIGITAL PCR

Cheng-Je Lee and Yu-Hsiang Hsu

National Taiwan University, TAIWAN

b - Micro- and Nanoengineering

Microscale Fabrication, Patterning, and Integration

M1-115,b A VACUUM-DRIVEN MICROFLUIDIC ARRAY FOR MULTI-STEP SAMPLE DIGITALIZATION

Jiumei Hu, Liben Chen, Hui Li, Kuangwen Hsieh, Pengfei Zhang, and Tza-Huei Wang *Johns Hopkins University, USA*

M1-116.b ENGINEERING MULTIPLY ENCAPSULATED MICROGELS FOR CONTROLLED LONG-TERM DRUG DELIVERY

Jing Liu, Cassidy Marie Enloe, Ralph McBride, John S. Oakey, and Katie Li-Oakey *University of Wyoming, USA*

M1-117.b FULLY PRINTED PIEZOELECTRIC DEVICES

Marc Alique¹, Marcos Duque², Claudia Delgado¹, Paul Lacharmoise¹, Gonzalo Murillo², and Ana Moya¹ Fundació Eurecat, SPAIN and ²IMB-CNM (CSIC), SPAIN

M1-118.b NANOPARTICLE DETECTION BY SOLID-STATE NANOPORE INTEGRATED INTO A REUSABLE MICROFLUIDIC DEVICE

Izadora Mayumi Fujinami Tanimoto^{1,2}, Benjamin Cressiot³, Jean Roman¹, Nathalie Jarroux^{1,2}, Gilles Patriarche¹, Bruno Le Pioufle¹, Juan Pelta^{1,2,3}, and Laurent Bacri^{1,1}

¹Université Paris-Saclay, FRANCE, ²Université d'Evry, FRANCE, and ³CY Cergy Paris Université, FRANCE

M1-119.b WHY ARE 3D-PRINTED MOLDS INHIBITING PDMS CURING?

Bastien Venzac¹, Shanliang Deng¹, Ziad Mahmoud², Aufried Lenferink¹, Fabrice Bray², Cees Otto¹, Christian Rolando², and Séverine Le Gac¹

¹University of Twente, THE NETHERLANDS and ²Université de Lille, FRANCE

M2-216.b AN INTEGRATED FLEXIBLE PLATFORM WITH PRINTED ORGANIC ELECTROCHEMICAL AND FIELD-EFFECT TRANSISTORS FOR BIOCHEMICAL SENSING

Silvia Demuru¹, Khalil Chennit², Vincent Noël², Benoit Piro², Giorgio Mattana², and Danick Briand¹

¹École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND and ²Paris Diderot University, FRANCE

M2-217.b ETCHED SILICON uDICER FOR UNIFORM SECTIONING OF TISSUE SAMPLES

Seth C. Cordts, Saisneha Koppaka, Nicolas Castaño, and Sindy K.Y. Tang *Stanford University, USA*

M2-218.b IN-SITU 3D WRITING OF MICROELECTRODES BASED ON PLASMA-ASSISTED MICROPLATING

Shinya Sakuma, Natsumi Basaki, Keita Ichikawa, and Yoko Yamanishi *Kyushu University, JAPAN*

M2-219.b OPTICAL GROWTH AND PATTERNING OF HIGHLY CONDUCTIVE SILVER ON ULTRASMOOTH NANOCELLULOSE PAPER

Yueyue Pan, Sina Kheiri, Zhen Qin, Binbin Ying, Peng Pan, Ran Peng, and Xinyu Liu *University of Toronto, CANADA*

T3-315.b ANALYSIS OF INSERTION FORCE OF POLYMER MICRONEEDLES WITH HIGH ASPECT RATIO

Yukihiro Kanda¹, Hiroaki Takehara^{1,2}, and Takanori Ichiki^{1,2}

¹University of Tokyo, JAPAN and ²Kawasaki Institute of Industry Promotion, JAPAN

T3-316.b FABRICATION AND CHARACTERIZATION OF 3D MICROFLUIDICS BLADES TO IMPROVE THE CUTTING OF BIOLOGICAL MATERIALS

Saisneha Koppaka, Lucas R. Blauch, Kevin S. Zhang, Seth C. Cordts, and Sindy K.Y. Tang *Stanford University, USA*

T3-317.b MECHANICALLY DIRECTING THE DIFFERENTION AND ORGANISATION OF STEM CELL TO RECAPITULATE KEY LIVER FUNCTION

Mary Okesola, Tamir S. Rashid, and Ciro Chiappini *King's College London, UK*

T3-318.b PIXELATED CHEMICAL DISPLAYS FOR DRY SURFACE PATTERNING IN INDUSTRIAL ROLL-TO-ROLL PROCESSES

Pierre-Alexandre Goyette¹ and Thomas Gervais^{1,2}
¹École Polytechnique de Montréal, CANADA and ²Université de Montréal, CANADA

T4-414.b 2D TO 3D TRANSFORMATION OF PEN-DRAWING

Sumin Lee¹, Seo Woo Song¹, Jun Kyu Choe², Na-Hyang Kim², Junwon Kang¹, Ju-Young Kim², Jiyun Kim², and Sunghoon Kwon¹

¹Seoul National University, KOREA and ²Ulsan National Institute of Science & Technology (UNIST), KOREA

T4-415.b BIOMIMETIC MICROFLUIDIC SYSTEM FOR EVALUATION OF SPERM NAVIGATION BEHAVIOR

Yimo Yan, Qiqi Fu, Boxuan Zhang, and Ran Liu *Tsinghua University, CHINA*

T4-416.b FABRICATION AND CHARACTERIZATION OF LITHIUM DOPED NAFION MEMBRANE AND HOLLOW GLASSY CARBON MICRONEEDLE FOR MICROPUMP BASED DRUG DELIVERY

Arkaprava Datta, Richa Mishra, Shatavisha Biswas, Jhimli Sarkar Manna, Riddhiman Dhar, and Tarun Kanti Bhattacharyya

Indian Institute of Technology, Kharagpur, INDIA

T4-417.b METAMOLDING: A MODULAR APPROACH TOWARD LARGE SCALE MICROPATTERNING AND MICROFLUIDICS

Jung Y. Han, Pranav Menon, and Don L. DeVoe *University of Maryland, College Park, USA*

T4-418.b QUANTITATIVE DESIGN STRATEGY OF THE RESOLUTION AND SCREEN AREA OF MICROFLUIDIC REFLECTIVE DISPLAY WITH SUB-PIXELS

Jumpei Muramatsu and Hiroaki Onoe *Keio University*, *JAPAN*

W5-514.b 360° LIGHT HARVESTING REFLECTOR FULLY INTEGRATED ON MICRLFUIDIC PLATFORM

Filippo Storti^{1,2}, Silvio Bonfadini¹, and Luigino Criante¹

¹Istituto Italiano di Tecnologia, ITALY and ²Politecnico di Milano, ITALY

W5-515.b CELL TRANSPORT WITH ADDRESSABLE MICROCHANNEL FORMED BY GEL ACTUATORS

Hiroki Wada¹, Yuha Koike¹, Yoshiyuki Yokoyama², and Takeshi Hayakawa¹

¹Chuo University, JAPAN and ²Toyama Industrial Technology Research and Development Center, JAPAN

W5-516.b FABRICATION OF ACTIVE MICROFLUIDICS ON GLASS WITH SEMICONDUCTOR GRADE MATERIAL.

Boshen Liang^{1,2}, Grim Keulemans¹, Brice Eychenne¹, Shruti Jambaldinni¹, David Cheyns¹, Tim Stakenborg¹, Veronique Rochus¹, Paul Heremans^{1,2}, and Lei Zhang¹

¹IMEC, BELGIUM and ²KU Leuven, BELGIUM

W5-517.b MICRO-PATTERNED PAPER FOR DRUG TESTING OF 3D TUMOR MODELS

Bisan Samara¹, Pavithra Sukumar¹, and Mohammad A. Qasaimeh^{1,2}

¹New York University Abu Dhabi, UAE and ²New York University, USA

W5-518.b RADIOPAQUE HYDROGEL MICROFIBER FOR ARTERIAL EMBOLIZATION

Naoki Takakura¹, Hiroki Ohta², Teppei Komatsu², Yuta Kurashina³, Hirotaka J. Okano², and Hiroaki Onoe¹ *Keio University, JAPAN*, ² *Jikei University School of Medicine, JAPAN*, and ³ *Tokyo Institute of Technology, JAPAN*

W6-614.b 3D PRINTED MULTIPURPOSE ATOMIC FORCE MICROSCOPY PROBES

Ayoub Glia, Muhammedin Deliorman, and Mohammad A. Qasaimeh ¹New York University Abu Dhabi, UAE and ²New York University, USA

W6-615.b DIGITAL LIGHT PROCESSING-BASED 3D PRINTED HYDROGEL SCAFFOLDS FOR ARTICULAR CARTILAGE TISSUE ENGINEERING

Chuan-Yung Wu¹, Yun-Jie Hao¹, Yu-Chuan Su¹, and Fan-Gang Tseng^{1,2}

¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

W6-616.b FABRICATION OF HIGHLY ORDERED POLYCAPROLACTONE MICROSPHERES FOR IN VITRO DRUG DELIVERY USING MICROFLUIDIC TECHNOLOGIES

Alejandro Forigua, Laila Abelseth, Stephanie M. Willerth, and Katherine S. Elvira *University of Victoria, CANADA*

W6-617.b MICROFLUIDIC DEVICES FOR PLASMA SEPARATION FABRICATED WITH A HIGH RESOLUTION CUSTOM MADE 3D PRINTER

Sandra Garcia-Rey^{1,2}, Gregory P. Nordin¹, Lourdes Basabe-Desmonts^{1,3}, Fernando Benito-Lopez¹, and Adam T. Woolley²

¹University of the Basque Country, SPAIN, ²Brigham Young University, USA, and ³IKERBASQUE, Basque Foundation for Science

W6-618.b STRETCHABLE INERTIAL MICROFLUIDICS

Hedieh Fallahi, Jun Zhang, Hoang-Phuong Phan, and Nam-Trung Nguyen *Griffith University, AUSTRALIA*

Th7-714.b 3D SKIN MICROFLUIDIC PHANTOM FOR IN VITRO WEARABLE TESTING

Genís Rabost-Garcia^{1,2}, Oscar Carreras-Gallo¹, Valeria Colmena², Javier Aguilar², Jaime Punter-Villagrasa², Francesc X. Muñoz^{2,3}, Josep Farré-Lladós¹, and Jasmina Casals-Terré¹

¹Universitat Politècnica de Catalunya, SPAIN, ²Onalabs Inno-hub S.L., SPAIN, and ³Centro Nacional de Microelectrónica, SPAIN

Th7-715.b DNA MICRO-DISK FOR THE EFFICIENT MANAGEMENT OF DNA-BASED DATA STORAGE

Hansol Choi¹, Yeongjae Choi¹, Amos Chungwon Lee¹, Wook Park², and Sunghoon Kwon¹ Seoul National University, KOREA and ²Kyung Hee University, KOREA

Th7-716.b FOCUSING OF MICROPARTICLES AT LOW REYNOLDS NUMBERS

Tianlong Zhang^{1,2}, Yaxiaer Yalikun¹, Misuzu Namoto¹, Kazunori Okano¹, Yo Tanaka³, Ming Li², and Yoichiroh Hosokawa¹

¹Nara Institute of Science and Technology, JAPAN, ²Macquarie University, AUSTRALIA, and ³RIKEN, JAPAN

Th7-717.b MULTIPLEXED CONVECTION-ENHANCED KINETICS IN MICROTITER PLATES

Iago Pereiro, Anna Fomitcheva Khartchenko, Robert D. Lovchik, and Govind V. Kaigala *IBM Research - Europe, SWITZERLAND*

Th7-718.b TUNING FIELD NON-UNIFORMITY ACROSS MICROCHANNELS FOR FLOW-THROUGH DIELECTROPHORETIC SEPARATIONS

XuHai Huang, Karina Torres-Castro, Walter Varhue, and Nathan S. Swami *University of Virginia, USA*

Th8-814.b A GENERALIZED SEMI-AUTOMATED RATIONAL DESIGN OF MICROPILLAR ARRAYS FOR MECHANOBIOLOGICAL STUDIES

Christopher J. Stubbs¹, Samuel O. Sofela^{2,3}, Navajit S. Baban^{2,3}, and Yong-Ak Song^{2,3}

¹University of Idaho, USA, ²New York University Abu Dhabi, UAE, and ³New York University, USA

Th8-815.b EASILY-FABRICATED FLUOROPOLYMER CHIPS FOR SENSITIVE LONG-TERM ABSORBANCE MEASUREMENT IN DROPLET MICROFLUIDICS

Adrian M. Nightingale¹, Sammer-ul Hassan¹, Kyriacos Makris², Wahida T. Bhuiyan¹, Terry J. Harvey¹, and Xize Niu^{1,2}

¹University of Southampton, UK and ²SouthWestSensor Ltd., UK

Th8-816.b FOUR-DIMENSIONAL PHOTONIC MICRO-ACTUATORS FOR MICROFLUIDICS APPLICATIONS

Marc del Pozo¹, Colm Delaney², Cees W.M. Bastiaansen^{1,3}, Dermot Diamond⁴, Albert P.H.J. Schenning¹, and Larisa Florea²

¹Eindhoven University of Technology, THE NETHERLANDS, ²Trinity College Dublin, IRELAND, ³Queen Mary University of London, UK and ⁴Dublin City University, IRELAND

Th8-817.b NanoFACEs: AN OPTICALLY TRANSPARENT NANOPAPER-BASED DEVICE FOR CELL

CULTURESiwan Park¹, Binbin Ying^{1,2}, Edmond W.K. Young¹, and Xinyu Liu¹ *University of Toronto, CANADA and ²McGill University, CANADA*

Th8-818.b VISCOELASTIC FOCUSING OF PARTICLES IN TRIANGULAR MICROCHANNEL

Prithviraj Mukherjee, Jian Zhou, and Ian Papautsky *University of Illinois, Chicago, USA*

b - Micro- and Nanoengineering

Nanoscale Fabrication, Patterning, and Integration

M1-120.b POLYMER-BASED NANOFLUIDIC DEVICES FOR RESISTIVE-PULSE SENSING OF HEPATITIS B VIRUS CAPSIDS

Sheng-Yuan Huang, Mi Zhang, Zhongchao Zhao, Adam Zlotnick, and Stephen C. Jacobson *Indiana University, USA*

M2-220.b APTAMER-BASED NANOFLUIDICS FOR THE MOLECULAR DETECTION IN ULTRA-SMALL VOLUME

Jinbin Yang¹, Hiroki Kamai¹, Yong Wang², and Yan Xu^{1,3}

¹Osaka Prefecture University, JAPAN, ²Pennsylvania State University, USA, and

³Japan Science and Technology Agency (JST), JAPAN

M2-221.b SURFACE PATTERNING OF NANOFLUIDIC CHANNELS AND ITS EVALUATION USING STREAMING CURRENT

Kyojiro Morikawa¹, Haruki Kazumi¹, Ryoichi Ohta¹, and Takehiko Kitamori^{1,2} *University of Tokyo, JAPAN and ²National Tsing Hua University, TAIWAN*

T3-319.b COATING MOFS ON MAMMALIAN CELL FOR BIOMEDICAL APPLICATIONS

Laura Ha and Dong-Pyo Kim

Pohang University of Science and Technology (POSTECH), KOREA

T3-320.b SELECTIVE ELECTRICAL SWITCHING OF MOLECULAR MOTORS BY DYNAMIC VIRTUAL CATHODE

Kenta Hatazawa¹, Ryuzo Kawamura², and Takayuki Hoshino¹ ¹Hirosaki University, JAPAN and ²Saitama University, JAPAN

T4-419.b DEVELOPMENT OF FABRICATION METHOD FOR CONCENTRIC CONNECTION OF MICROCHANNEL AND NANOCHANNEL

Kyojiro Morikawa¹, Erina Takeuchi¹, and Takehiko Kitamori^{1,2}

¹University of Tokyo, JAPAN and ²National Tsing Hua University, TAIWAN

T4-420.b TECHNOLOGICAL ASPECTS OF DEVICES FOR EFFICIENT ION CONCENTRATION POLARIZATION AND ELECTRODRIVENSEPARATION WITH ULTRA-SHALLOW NANOCHANNELS

Elizaveta Vereshchagina¹, Yuliya Shakalisava², Aina Suphellen¹, Sigurd Moe¹, and Thomas Hankemeier² ¹SINTEF, NORWAY and ²Leiden University, THE NETHERLANDS

W5-519.b FABRICATION OF SUB-40-NANOMETER NANO-IN-NANO STRUCTURES IN NANOCHANNELS

Hiroki Kamai¹ and Yan Xu^{1,2}

¹Osaka Prefecture University, JAPAN and ²Japan Science and Technology Agency (JST), JAPAN

W5-520.b TWO-PHOTON POLYMERIZATION OF MASTERS FOR POLYMERIC NANOPILLAR REPLICATION

Niamh Geoghegan^{1,2}, Colm Delaney¹, Larisa Florea³, Mark O' Loughlin¹, and Susan M. Kelleher^{1,2}
¹University College Dublin, IRELAND, ²National University of Ireland, Galway, IRELAND, and
³Trinity College Dublin, IRELAND

W6-619.b INTEGRATION OF GLASS DEFORMATION NANOCHANNEL OPEN/CLOSE VALVES INTO A NANOFLUIDIC DEVICE AND FEMTO-LITER FLUID OPERATIONS

Hiroki Sano¹, Yutaka Kazoe², Kyojiro Morikawa¹, and Takehiko Kitamori^{1,3}

¹University of Tokyo, JAPAN, ²Keio University, JAPAN, and ³National Tsing Hua University, TAIWAN

Th7-719.b NANOFLUIDIC DEVICE WITH fL-pL DROPLET HANDLING FOR SINGLE MOLECULE CHEMICAL REACTION

Naoya Sawahata¹, Kyojiro Morikawa¹, and Takehiko Kitamori^{1,2}

¹University of Tokyo, JAPAN and ²National Tsing Hua University, TAIWAN

Th8-819.b NANOSURFACE MICROFLUIDIC DEVICE EMBEDDED WITH NANO-TRIANGLES FOR SURFACE-ENHANCED RAMAN SPECTROSCOPY AND SURFACE-ENHANCED FLUORESCENT MICROSCOPY

Mahsa Jalali, Sayed Imman Issac Hosseini, Tamer Abdelfattah, Lara Montermini, Sebastian Wachsmann Hugo, Janusz Rak, and Sara Mahshid *McGill University, CANADA*

b - Micro- and Nanoengineering

Micropumps, Valves, and Dispensers

M1-121.b A MODULAR MICROFLUIDIC PARALLEL DISPENSING SYSTEM

Dean de Boer, Anke R. Vollertsen, Albert van den Berg, Andries D. van der Meer, and Mathieu Odijk *University of Twente, THE NETHERLANDS*

M2-222.b AUTOMATED BLOOD PLASMA SEPARATION AND METERING FOR CLINICAL SETTINGS AND CENTRIFUGAL MICROFLUIDICS DEVICES

Noa Lapins, Amin Kazemzadeh, and Aman Russom KTH Royal Institute of Technology, SWEDEN

T3-321.b AUTONOMOUS CAPILLARY MICROFLUIDIC DEVICES WITH CONSTANT FLOW RATE AND TEMPERATURE-CONTROLLED VALVING

Lanhui Li^{1,2}, Eiko Westerbeek¹, Jeroen Vollenbroek^{1,3}, Lingling Shui², Mathieu Odijk¹, and Jan Eijkel¹ *University of Twente, THE NETHERLANDS*, ²*South China Normal University, CHINA, and* ³*University Medical Center, THE NETHERLANDS*

T4-421.b BARRIER-FILM BASED REAGENT STORAGE AND RELEASE ON MICROFLUIDIC PLATFORMS FOR SAMPLE-TO-ANSWER AUTOMATION OF BIOASSAYS

Rohit Mishra, Darren McAuley, Natalia Rolinska, David Boyle, and Jens Ducrée *Dublin City University, IRELAND*

W5-521.b DEVELOPMENT OF A MIST-BASED HYDROGEL CROSSLINKING PRINTHEAD FOR DROPLET-BASED BIOPRINTING

Ben MacCallum, Sara Badr, Emad Naseri, Armin Bodaghkhani, and Ali Ahmadi *University of Prince Edward Island, CANADA*

W6-620.b 3D-PRINTED PERISTALTIC PUMP KIT

Terry Ching^{1,2}, Yi-Chin Toh^{2,3}, and Michinao Hashimoto¹
¹Singapore University of Technology and Design, SINGAPORE, ²National University of Singapore, SINGAPORE, and ³Queensland University of Technology, AUSTRALIA

W6-621.b METACHRONAL ACTUATION OF MAGNETIC ARTIFICIAL CILIA GENERATES STRONG MICROFLUIDIC PUMPING

Shuaizhong Zhang, Zhiwei Cui, Ye Wang, and Jaap den Toonder Eindhoven University of Technology, THE NETHERLANDS

Th7-720.b A MICRO-MACHINED HYDRAULIC FLOW AND COMPLIANCE TUNER

Cornelia Nef¹, Peter Heeb², Sabrina Frey³, Dominic Obrist⁴, and André Bernard⁵

¹OST University of Applied Science, SWITZERLAND, ²FISBA AG, SWITZERLAND, ³CorFlow Therapeutics AG, SWITZERLAND, ⁴University of Bern, SWITZERLAND, ⁵matriq AG, SWITZERLAND

Th7-721.b RECIPROCATING FLOW-ASSISTED FINGER-ACTUATED DNA EXTRACTION DEVICE

Dong Hyun Han, Juhwan Park, and Je-Kyun Park

Korea Advanced Institute of Science and Technology (KAIST), KOREA

Th8-820.b A MICROFLUIDIC VALVING ARRAY FOR WEARABLE BIOFLUID MANAGEMENT

Jiawei Tan, Haisong Lin, Shuyu Lin, Wenzhuo Yu, Jialun Zhu, Yichao Zhao, Xuanbing Cheng, Siyang Yang, Eric Tang, and Sam Emaminejad

University of California, Los Angeles, USA

Th8-821.b ROTARY ACTUATION SYSTEM FOR MAGNETIC BEADS

Fujio Tsumori and Kazuki Tokumaru Kyushu University, JAPAN

b - Micro- and Nanoengineering

Bonding, Sealing & Interfacing Technologies

M1-122.b DIRECT LASER WRITING IN THERMOPLASTIC MICROCHANNELS BY IN SITU PHOTOINITIATION

Jung Y. Han, Sarah Warshawsky, and Don L. DeVoe *University of Maryland, College Park, USA*

M2-223.b SIMULATION OF TUMOR CELL EXTRAVASATION ON A PHOTOLITHOGRAPHY-FREE MICROFLUIDIC DEVICE

Yuichiro Asaumi¹ and Naoki Sasaki^{1,2}

¹Toyo University, JAPAN and ²Rikkyo University, JAPAN

b - Micro- and Nanoengineering

New Materials and Surface Modification

M1-123.b MECHANISTIC STUDY OF OXYGEN-SCAVENGING PROPERTIES OF OFF-STOICHIOMETRIC THIOL-ENES

Iiro Kiiski¹, Päivi Järvinen¹, Ville Jokinen², and Tiina Sikanen¹

¹University of Helsinki, FINLAND and ²Aalto University, FINLAND

M2-224.b MULTI-MODAL ANALYSIS OF TUMOR-DERIVED EXTRACELLULAR VESICLES IMMUNOCAPTURED FROM PLASMA

Pepijn Beekman¹, Agustin Enciso-Martinez², Melissa Piontek³, Leon Terstappen², Wouter Roos³, Cees Otto², and Séverine Le Gac¹

¹University of Twente, THE NETHERLANDS and ²Rijksuniversiteit Groningen, THE NETHERLANDS

T3-322.b DEVELOPMENT OF A FLOW-FREE GRADIENT GENERATOR USING A SELF-ADHESIVE THIOL-ACRYLATE MICROFLUIDIC RESIN/HYDROGEL (TAMR/H) HYBRID SYSTEM

Anowar H. Khan¹, Noah M. Smith¹, Michael P. Tullier¹, B. Seth Roberts¹, Derek Englert², John A. Pojman¹, and Adam T. Melvin¹

¹Louisiana State University, USA and ²University of Kentucky, USA

T3-323.b NANOCATALYSTS FOR MAGNETIC FILED ASSISTED BIOFILM ERADICATION

Mamata Karmacharya^{1,2}, Sumit Kumar^{1,2}, and Yoon-Kyoung Cho^{1,2}

¹Ulsan National Institute of Science & Technology (UNIST), KOREA and

²Institute for Basic Science (IBS), KOREA

T4-422.b ELECTROACTIVE POLYMER MEMBRANES AS SUBSTRATES FOR POINT-OF-CARE DEVICES

Ricardo Brito-Pereira¹, André S. Macedo¹, Senentxu Lanceros-Méndez^{1,2,3}, and Vanessa F. Cardoso¹

¹University of Minho, PORTUGAL, ²BCMaterials, SPAIN, and

³IKERBASQUE, Basque Foundation for Science, SPAIN

W5-522.b EVALUATION OF MINERAL AND BACTERIA ADHESION ON MICROCHANNEL COATED WITH DIAMOND LIKE CARBON AND MPC BASED COPOLYMER

Tomomi Sato, Shun Murooka, Toshihiro Kasama, Zhou Lu, Madoka Takai, and Ryo Miyake *University of Tokyo, JAPAN*

W6-622.b FABRICATION OF GOLD-NANORINGS FOR MASSIVELY PARALLEL INTRACELLULAR DELIVERY

Loganathan Mohan¹, Ren Hattori¹, Miho Ishii-Teshima¹, Sathish Sundar Dhilip Kumar², Srabani Kar³, Tuhin Subhra Santra⁴, Takayuki Shibata¹, and Moeto Nagai¹

¹Toyohashi University of Technology, JAPAN, ²University of Johannesburg, SOUTH AFRICA,

³University of Cambridge, UK, and ⁴Indian Institute of Technology Madras, INDIA

Th7-722.b HOLIFAB: PRECISE FLOW CONTROL USING PHOTO ACTUATED HYDROGEL VALVES AND PI CONTROLLED LED ACTUATION FOR MICROFLUIDIC MEMS.

Ruairí Barrett, Komala Pandurangan, Akshay Shinde, Dermot Diamond, and Margaret McCaul Dublin City University, IRELAND

Th8-822.b MECHANICAL CHARACTERIZATION OF SPIDER SILK NANOMEMBRANES

Linnea Gustafsson, Christos Panagiotis Tasiopoulos, Thijs Duursma, Ronnie Jansson, Thomas Christian Gasser, My Hedhammar, and Wouter van der Wijngaart *KTH Royal Institute of Technology, SWEDEN*

b - Micro- and Nanoengineering

Others

T4-423.b RECONSTITUTION OF HUMAN PRIMORDIAL GERM CELL DEVELOPMENT FROM PLURIPOTENT STEM CELLS IN A SYNTHETIC EMBRYONIC ENVIRONMENT

Sajedeh Nasr Esfahani¹, Yi Zheng¹, Agnes M. Resto Irizarry¹, Yue Shao², Sicong Wang¹, Xufeng Xue¹, and Jianping Fu¹

¹University of Michigan, Ann Arbor, USA and ²Tsinghua University, CHINA

b - Micro- and Nanoengineering

Industrial Benefactor

M1-124.b FROM LAB TO FAB: CONSIDERATIONS FOR DEVICE DESIGN AND MANUFACTURING OPTIONS FOR UPSCALING MICROFLUIDIC DEVICE PRODUCTION

Holger Becker, Nadine Hlawatsch, Richard Klemm, and Claudia Gärtner microfluidic ChipShop GmbH, GERMANY

M2-282.b Hicomp - YOUR TRUSTED TECHNOLOGY AND SOLUTION PROVIDER FOR MICROFLUIDICS

Yexiam Wu

HiComp Microtech (Suzhou) Co., Ltd., CHINA

Th7-783.b MASKLESS ALIGNER TECHNOLOGY FOR THICK PHOTORESIST APPLICATIONS

Gregg Moore and Niels Wijnaendts van Resandt Heidelberg Instruments, Inc., USA

b - Micro- and Nanoengineering

Late News

M1-174.b CELLOPHANE-BASED ANALYTICAL DEVICES FOR PUMP-FREE LIQUID TRANSPORT AND BACKGROUND-TINTED COLORIMETRIC ASSAYS

Hiroki Shigemori, Kento Maejima, Hiroyuki Shibata, Yuki Hiruta, and Daniel Citterio *Keio University*, *JAPAN*

M1-175.b ON-CHIP BIDIRECTIONAL MICROFLUIDIC PUMPING ACTUATED REMOTELY BY ACOUSTIC WAVES

Tao Luo and Mingming Wu Cornell University, USAch

M1-176.b REVERSIBLE UNDERWATER-ADHESIVE HYDROGEL MICROSTRUCTURE BASED ON PHOTOCROSSLINKING GRADIENT

Jinsik Yoon and Wook Park

Kyung Hee University, KOREA

M2-274.b DEMOCRATISED MICROFLUIDIC PROTOTYPING USING A 3D-PRINTED CLICK-AND-CONNECT SCAFFOLD LIBRARY

Robert R. Hughes, Harry Felton, and Andrea Diaz Gaxiola *University of Bristol, UK*

M2-275.b OPTICAL METHOD FOR THE MEASUREMENT OF TRANSIENT FLOW RATES OF A TPU-MEMBRANE-BASED MICROPUMP

Hannah Bott¹, Ronny Leonhardt¹, Franz Laermer¹, Roland Zengerle², and Jochen Hoffmann¹ Robert Bosch GmbH, GERMANY and ²University of Freiburg, GERMANY

M2-276.b SIMPLE METHOD FOR MICRO-PATTERNED CONDUCTIVE HYDROGEL FABRICATION Hyeli Kim, Goomin Kwon, Jungmok You, and Wook Park

Kyung Hee University, KOREA

T3-375.b DESIGN AND MICROFABRICATION OF MICROREACTOR ARRAY FOR PLATE READER FOR E. Coli RESEARCH

Gaozhe Cai^{1,2}, Shilun Feng¹, Yang Liu¹, Wenshuai Wu¹, Jingbo Zhang¹, Jianhan Lin², and Ai-Qun Liu¹ *Nanyang Technological University, SINGAPORE and ²China Agricultural University, CHINA*

T3-376.b STUDY OF THE FABRICATION OF MODULAR FLUIDIC/MICROFLUIDIC PLATFORM USING A LOW-CLASS 3D PRINTER

Isa Anshori¹, Vincent Lukito¹, Angelica Irene¹, Brian Yuliarto¹, and Briliant Adhi Prabowo²

¹Institut Teknologi Bandung, INDONESIA and ²International Iberian Nanotechnology Laboratory, PORTUGAL

T4-475.b DEVELOPMENT OF A MICRO-MICROBIAL DOMESTICATION POD FOR *IN-SITU* MARINE BACTERIAL CULTIVATION

Sydney K. Wheatley¹, Christopher Cartmell¹, Bradley A. Haltli^{1,2}, Russell G. Kerr^{1,2}, and Ali Ahmadi¹ *University of Prince Edward Island, CANADA and* ² *Nautilus Biosciences, CANADA*

T4-476.b THROMBOGENIC POLYMER SURFACE MANIPULATION OF MICROFLUIDIC CHIPS VIA ULTRAVIOLET LASER

Yi Xu¹, Guang Yu¹, Ruqiong Nie², and Zhigang Wu¹

¹Huazhong University of Science and Technology, CHINA and ²Sun Yat-Sen University, CHINA

W5-574.b DUAL-SCALE PERMANENT MAGNET FOR ENHANCED MAGNETIC SORTING EFFICIENCY IN A MICROFLUIDIC SYSTEM

Lucie Descamps¹, Samir Mekkaoui¹, Marie-Charlotte Audry¹, Emmanuelle Laurenceau¹, Jessica Garcia¹, Léa Payen², Anne-Laure Deman¹, and Damien Le Roy²

¹Université Lyon 1, FRANCE and ²Hospices Civils de Lyon, FRANCE

W5-575.b TRAFFIC-LIGHT-TYPE MICROFLUIDIC PAPER-BASED ANALITICAL DEVICE FOR HYDROGEN PEROXIDE DETECTION

Sera Ohta, Ryuya Hiraoka, Yuki Hiruta, and Daniel Citterio *Keio University, JAPAN*

W6-675.b ACTIVE AND PASSIVE FLOW CONTROL BY PNEUMATIC ACTUATED FLEXIBLE VALVE ON SINGLE LAYER

Yoshiharu Bessho, Yingzhe Wang, and Keisuke Morishima Osaka University, JAPAN

W6-676.b FABRICATION OF A MICROPARTICLE COATED WITH A GOLD NANO THIN FILM

Kibeom Kim and Wook Park Kyung Hee University, KOREA

Th7-774.b BATTERY-FREE BUILT-IN MICROPUMP DRIVEN BY A SELF-PROPELLED DROPLET

Taiji Okano¹, Kazuki Otsubo², Junya Wada², and Hiroaki Suzuki²

¹Tokyo University of Agriculture and Technology, JAPAN and ²Chuo University, JAPAN

Th7-775.b HYDROGEL-BASED Microswimmer MOVING TOWARDS THE TARGET POSITION WITH RECOGNITION OF ENVIRONMENTAL CHANGES

Cheolheon Park¹, Youngjae Choi², Sunghoon Kwon², and Wook Park¹

¹Kyung Hee University, KOREA and ²Seoul National University, KOREA

Th8-872.b FULLY AUTOMATED IMMUNOASSAY IN A LAB-ON-A-FOIL DEVICE WITH LED-ACTUATED VALVES

Mireia Burdó-Masferrer¹, María Díaz-González¹, Ana Sanchis^{2,3}, M.-Pilar Marco^{2,3}, César Fernández-Sánchez^{1,3}, and Antonio Baldi¹

¹Institut de Microelectrònica de Barcelona, SPAIN, ²Institut de Química Avançada de Catalunya, SPAIN, and ³CIBER-BBN, SPAIN

Th8-873.b INK-JET PRINTED MICROFLUIDIC PAPER-BASED ANALYTICAL DEVICES RELYING ON QR CODE DETECTION

Aya Katoh, Kento Maejima, Yuki Hiruta, and Daniel Citterio *Keio University, JAPAN*

c - Sensors and Detection Technologies

Physical Sensors

M1-125.c HARDNESS MEASUREMENT BY MICROMANIPULATOR WITH EMBEDED SEMICONDUDTOR STRAIN GAUGE

Mitsuhiro Horade

National Defense Academy of Japan, JAPAN

M2-225.c LOVE WAVE SENSOR FOR DETECTION OF VISCOSITY CHANGES ON A CELL MONOLAYER

Pedro A. Segura Chavez^{1,2}, Frederic Sarry^{1,2}, Mohamed Lamine Fayçal Bellaredj², Jérémy Bonhomme^{1,2}, Lucile Olive², Denis Beyssen², Mourad Oudich², and Paul G. Charette¹

¹Universite de Sherbrooke, CANADA and ²Universite de Lorraine, FRANCE

T3-324.c DEVELOPMENT OF A QCM-P SENSING SYSTEM FOR BIOLOGICAL DETECTION

Siqi Ji¹, Berk Akinci², Tory A. Farnping³, Thomas A. Radzik³, and Hongwei Sun¹

¹University of Massachusetts, Lowell, USA, ²Invitrometrix, USA, and ³Lowell High School, USA

T4-424.c WEARABLE MICROFLUIDIC SENSOR TO MONITOR SWEAT FLOW RATE AND ELECTROLYTE CONCENTRATION

Yuki Hashimoto¹, Yuki Sakurai^{1,2}, Takako Ishihara¹, Kei Kuwabara¹, and Hiroyoshi Togo¹

NTT Device Innovation Center, NTT Corporation, JAPAN and ²Nagaoka University of Technology, JAPAN

W5-523.c A FLEXIBLE AND STABLE STRAIN SENSOR BASED ON POLYIMIDE INCORPORATED WITH CARBON BLACK

Jie Wang, Yunfei Liu, Wenhan Chang, Shoule Sun, Chengchen Gao, Zhenchuan Yang, and Yilong Hao *Peking University, CHINA*

W6-623.c CARBON NANOTUBE-PAPER COMPOSITE-CAPACITIVE SENSOR FOR RESPIRATORY MONITORING

Tianyi Li, Vigneshwar Sakthivelpathi, Seong-Joong Kahng, Zhongjie Qian, Sheila Goodman, Heather Wise, Anthony B. Dichiara, Younghoon Kwon, and Jae-Hyun Chung *University of Washington, USA*

Th7-723.c A COMPACT MICROCALORIMETER FOR THE RAPID CHARACTERIZATION OF LIQUID THERMAL PROPERTIES

Sheng Ni¹, Hanliang Zhu², Pavel Neuzil², ³, and Levent Yobas¹

¹Hong Kong University of Science and Technology, HONG KONG,

²Northwestern Polytechnical University, CHINA, and ³Brno University of Technology, CZECH REPUBLIC

Th8-823.c DESIGN AND CONSTRUCTION OF A CONTINUOUS QUANTITATIVE FORCE MEASUREMENT MICRODEVICE FOR ARTIFICIAL SKELETAL MUSCLE

Masaki Harada, Tomohiro Nakamura, and Sho Yokoyama *Osaka Institute of Technology, JAPAN*

c - Sensors and Detection Technologies

Chemical & Electrochemical Sensors

M1-126.c A PAPER-BASED DEVICE FOR INTEGRATED HIGH-THROUGHPUT COVID-19 DETECTION

Hao Sun^{1,2}, Jianping Zheng³, Hui Dong^{1,2}, and Yuan Jia⁴

¹Fuzhou University, CHINA, ²Fujian Provincial Collaborative Innovation Center of High-End Equipment Manufacturing, CHINA, ³Fujian Provincial Hospital, CHINA, and ⁴Southeast University, CHINA

M1-127.c ELECTROCHEMICAL OLIGONUCLEOTIDE TEMPLATED REACTIONS

Robert B. Channon¹, Philip Gillespie¹, Md Nazmul Islam², Xiaotong Meng¹, Yu-Chih Chen¹, Danny O'Hare¹, and Sylvain Ladame¹

¹Imperial College London, UK and ²Teeside University, UK

M1-128.c MULTISTEP REACTIONS BY ALIGNED TABLET REAGENTS FOR LONG TERM MONITORING OF PLANT CULTURE SOLUTION

Yoko Azuma^{1,4}, Toshihiro Kasama^{1,4}, Yoshishige Endo^{1,4}, Tetsushi Koide^{2,4}, Chiharu Sone^{3,4},

Masashi Komine^{3,4}, Atsushi Ogawa^{3,4}, and Ryo Miyake^{1,4}

¹University of Tokyo, JAPAN, ²Hiroshima University, JAPAN, ³Akita Prefectural University, JAPAN, and ⁴Japan Science and Technology Agency (JST), JAPAN

M1-129.c PRINTED MULTISENSING PATCH WITH INTEGRATED MICROFLUDICS FOR WEARABLE SWEAT ANALYSIS APPLICATIONS

Brince Paul¹, Silvia Demuru¹, Rubaiyet Iftekharul Haque¹, Peter van der Wal¹, Céline Lafaye²,

Mathieu Saubade², and Danick Briand¹

¹École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND and

²Centre Hospitalier Universitaire Vaudois (CHUV), SWITZERLAND

M2-226.c A THREAD-BASED ELECTROCHEMICAL SENSOR FOR SPATIAL MONITORING OF WOUND OXYGENATION

Junfei Xia, Wenxin Zeng, Wei Wang, Rachel Owyeung, Victor Arsenescu, and Sameer Sonkusale *Tufts University, USA*

M2-227.c ELECTROCHEMICAL SENSOR FOR Mn DETECTION IN DRINKING WATER

Elena Boselli¹, Zhizhen Wu¹, Alexa Friedman², Birgit Claus Henn², and Ian Papautsky¹ *University of Illinois, Chicago, USA and ²Boston University School of Public Health, USA*

M2-228.c NANOPORE DECODING FOR DNA COMPUTATION WITH PARALLEL SELF-ASSEMBLY

Sotaro Takiguchi and Ryuji Kawano

Tokyo University of Agriculture and Technology, JAPAN

M2-229.c TiO₂ NANOTUBES-HYDROGEL BIOSENSOR SCAFFOLD FOR SWEAT MONITORING

Udara B. Gunatilake¹, Edilberto Ojeda¹, Sandra Garcia-Rey¹, Lourdes Basabe-Desmonts^{1,2}, and Fernando Benito-Lopez¹

¹University of the Basque Country, SPAIN and ²Basque Foundation of Science, IKERBASQUE, SPAIN

T3-325.c ANALYSIS OF ION COMPONENTS DERIVED FROM PARTICULATE MATTER USING ION SELECTIVE ELECTRODES

Haruka Yamauchi¹, Taisuke Shimada¹, Takao Yasui^{1,2}, Tatsuro Goda³, Noritada Kaji⁴, Yuji Miyahara³, and Yoshinobu Baba^{1,5}

¹Nagoya University, JAPAN, ²Japan Science and Technology Agency (JST), JAPAN,

³Tokyo Medical and Dental University, JAPAN, ⁴Kyushu University, JAPAN,

⁵National Institutes for Quantum and Radiological Science and Technology, JAPAN

T3-326.c EMBEDDED SENSOR BASED ON TANDEM SMARTPHONE-MICROFLUIDIC DEVICE FOR THE DETECTION OF TNT IN SURFACE AND SEA WATERS

Jérémy Bell, Mustafa Biyikal, and Knut Rurack

Bundesanstalt für Materialforschung & -prüfung (BAM), GERMANY

T3-327.c NOVEL FORMAT OF A PAPER-BASED DEVICE FOR COMPETITIVE IMMUNOASSAYS

Takeshi Komatsu, Masatoshi Maeki, Akihiko Ishida, Hirofumi Tani, and Manabu Tokeshi *Hokkaido University, JAPAN*

T3-328.c TOWARDS ON-SITE MONITORING OF SOIL NUTRIENTS VIA CAFETIERE-BASED EXTRACTION AND PAPER-BASED ANALYSIS

Samantha Richardson¹, Samira AlHinai¹, Jesse Gitaka², Will M. Mayes¹, Mark Lorch¹, and Nicole Pamme¹ *University of Hull, UK and ²Mount Kenya University, KENYA*

T4-425.c ANALYSIS OF PARTICULATE MATTERS VIA SURFACTANT-ASSISTED IONIC CURRENT SENSING

Keiko Fujino¹, Taisuke Shimada¹, Takao Yasui^{1,2}, Kazuki Nagashima³, Takashi Yanagida³, Noritada Kaji³, and Yoshinobu Baba^{1,4}

¹Nagoya University, JAPAN, ²Japan Science and Technology Agency (JST), JAPAN, ³Kyushu University, JAPAN, and ⁴National Institutes for Quantum and Radiological Science and Technology, JAPAN

T4-426.c HIGH-RESOLUTION BIOCHEMICAL ACTIVITY MEASUREMENTS WITH COMMERCIAL TRANSISTORS

Seulki Cho, Son T. Le, Curt A. Richter, and Arvind Balijepalli National Institute of Standards and Technology (NIST), USA

T4-427.c ON-CHIP MONITORING OF PHOSPHATE VIA A DROPLET MICROFLUIDIC SENSOR

Bingyuan Lu¹, Sharon Coleman¹, Evanthia Papadopoulou², Kyriacos Makris², Brett M. Warren², Adrian M. Nightingale¹, and Xize Niu¹

¹University of Southampton, UK and ²SouthWestSensor Ltd., UK

T4-428.c WEARABLE PATCH-TYPE DEVICE FOR BIO-INFORMATION MONITORING WITH POROUS MICRONEEDLE AND FLEXIBLE AG/AGCL REFERENCE ELECTRODE

Ryohei Takizawa, Yuina Abe, Bibek Raut, Hajime Konno, Natsumi Kimura, Shotaro Yoshida, Hiroya Abe, and Matsuhiko Nishizawa

Tohoku University, JAPAN

W5-524.c A BIOCHIP INTEGRATED WITH MICROELECTRODES FOR MONITORING OF PYOCYANIN IN THE FORMATION PROCESS OF BIOFILMS

Lulu Liu, Ling Li, Chuang Ge, and Yi Xu *Chongqing University, CHINA*

W5-525.c CARBON DOT-CONJUGATED-NAPHTHALIMIDE BASED RATIOMETRIC FLUORESCENCE PROBE FOR HYALURONIDASE DETECTION

Pushap Raj and Tae Yoon Lee

Chungnam National University, KOREA

W5-526.c HYBRID WEARABLE TECHNOLOGY FOR SWEAT BIOMONITORING

Meritxell Rovira¹, César Fernández-Sánchez¹, Silvia Demuru², Rubaiyet Haque², Danick Briand², and Cecilia Jimenez-Jorquera¹

¹Instituto de Microelectrónica de Barcelona (IMB-CNM), SPAIN and ²École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

W5-527.c OPEN CHANNEL SWEAT VIA FOR LONG-TERM MONITORING OF SWEAT RATE AND CONCENTRATION

Jina Choi¹, Sangha Kim¹, Sunho Kim², Hyunjung Yi², and Rhokyun Kwak¹

¹Hanyang University, KOREA and ²Korea Institute of Science and Technology (KIST), KOREA

W6-624.c A DIFFERENTIAL MODE EXTENDED GATE FIELD EFFECT TRANSISTOR PH SENSOR BASED ON AL₂O₃ THICKNESS DEPENDENT SENSITIVITY

Qi Cheng, Qiancheng Zhao, Chengchen Gao, Yilong Hao, and Zhenchuan Yang *Peking University, CHINA*

W6-625.c DIFFERENTIAL PHOTOELECTROCHEMICAL DNA SENSING BY MODULATING THE PLASMONIC PROPERTIES OF METAL NANOPARTICLES

Sudip Saha, Amanda Victorious, and Leyla Soleymani *McMaster University, CANADA*

W6-626.c HYDROGEL-BASED TRANSPARENT SUBDURAL ELECTRODE WITH IONIC CONNECTION

Ayaka Nishimura, Ryota Suwabe, Yuka Ogihara, Yuina Abe, Hiroya Abe, Shotaro Yoshida, and Matsuhiko Nishizawa *Tohoku University*, *JAPAN*

W6-627.c OXYGEN METABOLISM ANALYSIS OF A VASCULARIZED SPHEROID USING A SCANNING ELECTROCHEMICAL MICROSCOPY

Yuji Nashimoto¹, Rei Mukomoto¹, Takato Terai¹, Kosuke Ino¹, Koichi Nishiyama², Ryuji Yokokawa³, Takahsi Miura⁴, and Hitoshi Shiku¹

¹Tohoku University, JAPAN, ²Kumamoto University, JAPAN, ³Kyoto University, JAPAN, and ⁴Kyushu University, JAPAN

Th7-724.c A DUAL-READOUT PAPER-BASED SENSOR FOR ON-SITE DETECTION OF PENICILLINASE WITH A SMARTPHONE

Jia Xu and Li Yang

Northeast Normal University, CHINA

Th7-725.c EFFECT OF MEMBRANE ELECTRODE VIBRATION ON MASS TRANSFER FOR ELECTROCHEMICAL MICRO SENSORS

Tianyi Zhang, Peng Zhou, Terrence Simon, and Tianhong Cui *University of Minnesota, USA*

Th7-726.c LABEL-FREE IMPEDIMETRIC SENSING OF CORTISOL IN HUMAN SERUM BASED ON NANOWELL ARRAY ELECTRODES

Seyed Reza Mahmoodi¹, Pengfei Xie¹, Daniel P. Zachs², Erik J. Peterson², Hubert H. Lim², Mark Allen³, and Mehdi Javanmard¹

¹Rutgers University, USA, ²University of Minnesota, USA, and ³University of Pennsylvania, USA

Th7-727.c POINT-OF-CARE MICROANALYZER FOR POTENTIOMETRIC DETERMINATION OF AMMONIUM IN PLASMA

Beatriz Rebollo-Calderon¹, Antonio Calvo-Lopez¹, Aida Ormazabal², Mar Puyol¹, Rafael Artuch², and Julian Alonso-Chamarro¹

¹Autonomous University of Barcelona, SPAIN and ²Sant Joan de Déu Hospital, SPAIN

Th8-824.c A NON-ENZYMATIC ELECTROCHEMICAL SENSOR USING WRINKLED GOLD FILM ON SHRINK POLYMER

Xiaomeng Bian¹ and Tianhong Cui²

¹Tsinghua University, CHINA and ²University of Minnesota, USA

Th8-825.c ELECTROCHEMICAL DETERMINATION OF MANGANESE IN WHOLE BLOOD

Zhizhen Wu and Ian Papautsky University of Illinois, Chicago, USA

Th8-826.c MULTIPLEX SENSOR FOR ION SENSING BASED ON PRINTED CIRCUIT BOARD

Zhehao Zhang and Ian Papautsky University of Illinois, Chicago, USA

Th8-827.c POWER-FREE AUTOMATED CAPILLARY FLOW ASSAY FOR SARS-COV-2 DETECTION

Jeremy Link¹, Cody Carrell¹, Ilhoon Jang^{1,2}, Yosita Panraksa^{1,3}, Ana Sánchez-Cano^{1,4}, Zachary Call¹, Eka Noviana¹, David S. Dandy¹, Brian J. Geiss¹, and Charles S. Henry¹

¹Colorado State University, USA, ²Hanyang University, KOREA, ³Chulalongkorn University, THAILAND, and ⁴Universitat Autònoma de Barcelona (UAB), SPAIN

c - Sensors and Detection Technologies

Optical Sensors & Imaging

M1-130.c DNA SEQENCING USING RGB SENSOR OF COMSUMER DIGITAL CAMERA

Takashi Anazawa¹, Motohiro Yamazaki², Shuhei Yamamoto², and Ryoji Inaba²
¹Hitachi, Ltd., JAPAN and ²Hitachi High-Tech Corporation, JAPAN

M1-131.c REAL-TIME STRAIN MEASUREMENT OF PIEZOELECTRICALLY ACTUATED POLYDIMETHYLSILOXANE (PDMS) BAR USING FIBRE BRAGG GRATING SENSOR FOR

BIOMEDICAL APPLICATIONSRahul Kumar¹, Bruno Rente¹, Souvik Ghosh¹, Christabel Tan², Tong Sun¹, and Kenneth Grattan¹
City University of London, UK and ²University of Hertfordshire, UK

M2-230.c REAL-TIME TRACKING OF PARTICLES AT >1,200 EVENTS PER SECOND USING GPU-ACCELERATED IMAGE PROCESSING

Arpith Vedhanayagam and Amar S. Basu Wayne State University, USA

T3-329.c FABRICATION AND CHARACTERIZATION OF AXIAL VIEW LIQUID ELECTRODE PLASMA

Yueh-Han Huang¹, Daisuke Hirose², Meng-Jiy Wang¹, and Yuzuru Takamura²

¹National Taiwan University of Science and Technology, TAIWAN and

²Japan Advanced Institute of Science and Technology, JAPAN

T3-330.c REFERENCE PH MICROSENSR FOR FLUORESCENCE MEASUREMENT IN CELL CULTURE ENVIRONMENT WITHOUT INITIAL PH INFORMATION

Hisataka Maruyama¹ and Fumihito Arai²

¹Nagoya University, JAPAN and ²University of Tokyo, JAPAN

T4-429.c HIGH RESOLUTION PATTERNING OF HYDROGEL SENSING MOTIFS WITHIN FIBROUS SUBSTRATES FOR HIGHLY SENSITIVE AND MULTIPLEXED DETECTION OF NUCLEIC ACID BIOMARKERS

Dana Al Sulaiman, Sarah J. Shapiro, Jose Gomez-Marquez, and Patrick S. Doyle *Massachusetts Institute of Technology, USA*

T4-430.c SOLVENT-ENHANCED PHOTOTHERMAL MOLECULE DETECTION METHOD FOR NANOFLUIDICS AND ITS APPLICATION TO FEMTOLITER NORMAL-PHASE CHROMATOGRAPHY

Yoshiyuki Tsuyama, Kyojiro Morikawa, and Kazuma Mawatari *University of Tokyo, JAPAN*

W5-528.c A MODULAR SMARTPHONE-ENABLED PLATFORM TO DETECT NUCLEIC ACID TARGETS BASED ON QUANTIFICATION OF COALESCED LAMP PRECIPITATE

Manaswini Masetty, Joseph Sepate, Sanghyun Do, and Aashish Priye *Univeristy of Cincinnati, USA*

W5-529.c INTEGRATED MICROFLUIDIC SERS CHIP FOR THE CAPTURE AND DETECTION OF PATHOGENIC BACTERIA IN THE AIR

Xi Su, Rui Ren, Shifang Li, Li Chen, and Yi Xu *Chongqing University*, *CHINA*

W5-530.c SPATIOTEMPORAL MAPPING OF A HYPOXIA-FFA SYNERGY ON BETA CELL CALCIUM OSCILLATIONS

Kai Duan and Joe Fujiou Lo

University of Michigan, Dearborn, USA

W6-628.c ACHIEVING SUB-MICROMETER IMAGING RESOLUTION IN PDMS SOFT LITHOGRAPHY DEVICES USING MODIFIED INVERTED SELECTIVE PLANE ILLUMINATION MICROSCOPY

Tienan Xu¹, Yean Jin Lim¹, Yujie Zheng¹, Moon Sun Jung², Katharina Gaus², Elizabeth E. Gardiner¹, and Woei Ming Lee¹

¹Australian National University, AUSTRALIA and ²University of New South Wales, AUSTRALIA

W6-629.c LOW-COST AND PORTABLE PHOTONIC IMMUNO-SENSOR BASED ON GUIDED MODE RESONANCE

Alexander Drayton, Kezheng Li, Matthew Simmons, Christopher Reardon, and Thomas F. Krauss *University of York, UK*

W6-630.c ULTRASENSITIVE PLASMONIC SENSORS ON OPTICAL FIBERS END-FACE

Alba Calatayud-Sanchez¹, Angel Ortega-Gomez¹, Javier Barroso¹, Joseba Zubia¹, Fernando Benito-Lopez¹, Joel Villatoro^{1,2}, and Lourdes Basabe-Desmonts^{1,2}

¹University of the Basque Country, SPAIN and ²Basque Foundation of Science, IKERBASQUE, SPAIN

Th7-728.c DETECTION OF HYDROGEN SULPHIDE IN HUMAN BLOOD PLASMA ON A MICROFLUIDIC PLATFORM

Ravindra Gaikwad, Karunya Ramsamy, and Ashis K. Sen *Indian Institute of Technology, Madras, INDIA*

Th7-729.c METAL ION ENRICHMENT USING ORGANIC NANOCRYSTAL COATED-MICROFLUIDIC PAPER ANALYTICAL DEVICES TO ACHIEVE HIGHLY SENSITIVE COLORIMETRIC DETECTION

Grasianto, Mao Fukuyama, Derrick Mott, Yoshitaka Koseki, Hitoshi Kasai, and Akihide Hibara *Tohoku University*, *JAPAN*

Th8-828.c DEVELOPMENT OF A SCANNING PIV TECHNIQUE FOR 3D CHARACTERIZATION OF FLOWS IN MICROCHANNELS

Quentin Galand, Pierre Gelin, Ketki Srivastava, David Blinder, Peter Schelkens, and Wim De Malsche *Vrije Universiteit Brussel, BELGIUM*

Th8-829.c RAPID IDENTIFICATION OF HCC SERUM BASED ON MICROFLUIDIC SERS CHIP

Xinyu He, Chuang Ge, Li Chen, and Yi Xu *Chongqing University, CHINA*

c - Sensors and Detection Technologies

Others

M1-132.c FLEXIBLE POLYOLEFIN-BASED DOPAMINE SENSOR WITH HIGH SELECTIVITY

Wenzheng He¹, Ruitao Liu¹, Peng Zhou², Qingyuan Liu¹, Tianhong Cui²

¹Tsinhua University, CHINA and ²University of Minnesota, USA

M1-133.c WIRELESS AND BATTERY-FREE DIGESTIBLE SENSOR FOR INTESTINAL BACTERIA MONITORING

Ayaka Inami, Erika Iyama, Shun Itai, and Hiroaki Onoe *Keio University, JAPAN*

M2-231.c GRADIENT ELUTION MOVING BOUNDARY ELECTROPHORESIS OF HOMEMADE FUEL-OXIDIZER EXPLOSIVES

Shannon T. Krauss¹, Dillon Jobes², and Thomas P. Forbes¹

¹National Institute of Standards and Technology (NIST), USA and ²Tulane University, USA

T3-331.c LOW-COST LOW-MOTION ARTIFACT ON-SKIN SENSOR-SYSTEM FOR PHYSIOLOGICAL SIGNAL RECORDING

Anan Zhang, Thalia Hua, Damian Redfearn, and S.K. Ameri Queen's University, CANADA

T4-431.c PAPER MICROFLUIDICS DEVICE FOR LABEL-FREE DETECTION OF MESENCHYMAL STEM CELLS SECRETED VASCULAR ENDOTHELIAL GROWTH FACTOR

Enrique Azuaje Hualde¹, Marian Martínez de Pancorbo¹, Fernando Benito Lopez¹, and Lourdes Basabe-Desmonts^{1,2}

¹University of the Basque Country, SPAIN and ²Basque Foundation of Science, IKERBASQUE, SPAIN

W5-531.c PLGA POROUS MICRONEEDLES FOR INTERSTITIAL FLUID COLLECTION AIMED FOR CONTINUOUS GLUCOSE SENSING

Gwenaël Bonfante, Hakjae Lee, Leilei Bao, Nobuyuki Takama, and Beomjoon Kim *University of Tokyo, JAPAN*

W6-631.c RAPID LABEL-FREE DNA QUANTIFICATION BY MULTI-FREQUENCY IMPEDANCE SENSING ON A CHIP

Jianye Sui¹, Neeru Gandotra², Curt Scharfe², and Mehdi Javanmard¹ *Rutgers University, USA and ²Yale University, USA*

$Th 7-730.c \quad AN\ ULTRASENSITIVE\ SURFACE\ ACOUSTIC\ WAVE\ SENSOR\ BASED\ ON\ TI_3C_2Tx/Au\ NPS$

COMPOSITE FOR THE DETECTION OF ENDOTOXIN

Xiao Li Wang, Chuang Ge, Li Chen, and Yi Xu

Chongqing University, CHINA

Th7-731.c SHAKE IT OR SHRINK IT: MASS TRANSPORT AND KINETICS IN SURFACE BIOASSAYS USING AGITATION AND MICROFLUIDICS

Anna Fomitcheva Khartchenko, Iago Pereiro, and Govind V. Kaigala

IBM Research - Europe, SWITZERLAND

Th8-830.c DETECTION OF PROTEOFORMS FROM SINGLE CELLS BY MULTIPLEXED ION BEAM IMAGING

Gabriela Lomeli¹, Marc Bosse², Sean Bendall², Michael Angelo², and Amy E. Herr³

¹UC Berkeley – UCSF Graduate Program in Bioengineering, USA,

²University of California, Berkeley, USA, and ³Stanford University, USA

Th8-831.c STIMULI-RESPONSIVE HYDROGELS EMBEDDING MECHANICHAL METAMATERIALS FOR HIGH SENSITIVE BIOCHEMICAL SENSORS

Shota Yamawaki, Mio Tsuchiya, and Hiroaki Onoe

Keio University, JAPAN

c - Sensors and Detection Technologies

Industrial Benefactor

T3-332.c NOVEL IMAGING BASED HIGH-SPEED, HIGH-THROUGHPUT ANALYSIS AND CONTROL SYSTEM FOR MICROFLUIDICS

Daniel Geiger¹, Jonas Pfeil¹, Tobias Neckernuss¹, Lisa Kwapich², Patricia Schwilling², and Othmar Marti² Sensific GmbH, GERMANY and ²University of Ulm, GERMANY

T4-432.c FAST ELECTRICAL IMPEDANCE SPECTROSCOPY FOR CELL CHARACTERIZATION AND COUNTING

Meng Li

Zurich Instruments AG, SWITZERLAND

c - Sensors and Detection Technologies

Late News

M1-177.c PARALLELIZED FLOW CYTOMETRY REALIZED BY ARRAY OF TIME-GATED SINGLE PHOTON AVALANCHE DIODES

Camille Trzeciakowski¹, Daiki Sato², Takahiro Shindo², Takeshi Mitsunaka², Yoshihisa Fujimoto²,

Kunihiko Iizuka², Saori Tago¹, Teruo Fujii¹, and Soo Hyeon Kim^{1,3}

¹University of Tokyo, JAPAN, ²Sharp Corporation, JAPAN, and

³Japan Science and Technology Agency (JST), JAPAN

M2-277.c PHOTONIC SENSOR TO DETECT OF SARS-COV-2

Binh T.T. Nguyen¹, Zhenyu Li¹, Yuzhi Shi¹, Patricia Y. Liu¹, Hongwei Zhao², Xiaohong Zhou¹, Eric P.H. Yap¹, and Ai Oun Liu¹

¹Nanyang Technological University, SINGAPORE, ²Hainan University, CHINA, and

³Tsinghua University, CHINA

T3-377.c ELECTROCHEMICAL DNA SENSING ENHANCED BY ELECTRIC FIELD USING CRISPR-CAS12A

Ziyue Li^{1,2}, Xiong Ding¹, Kun Yin¹, and Changchun Liu¹

¹University of Connecticut Health Center, USA and ²University of Connecticut, USA

T3-378.c RAPID ANTIFUNGAL SUSCEPTIBILITY TESTING ON SILICON MICROWELLS

Christopher Heuer^{1,2}, Heidi Leonard¹, Nadav Nitzan¹, Ariella Lavy-Alperovitch¹, Naama Massad-Ivanir¹, Janina Bahnemann², Thomas Scheper², and Ester Segal¹

¹Technion - Israel Institute of Technology, ISRAEL and ²Leibniz University Hannover, GERMANY

T4-477.c AN IMPROVED ACETYLCHOLINESTERASE INHIBITION ASSAY UTILIZING ORGANIC SOLVENT EXTRACTION FOR FOOD ANALYSIS

Lili Jin¹, Zhenxia Hao^{1,2}, Qingin Zheng¹, Hongping Chen^{1,2}, and Chengyin Lu^{1,2}

¹Chinese Academy of Agricultural Sciences, CHINA and ²Ministry of Agriculture and Rural Affairs, CHINA

T4-478.c FLEXIBLE DOPAMINE SENSOR WITH ELECTROPHORETIC DEPOSITED GRAPHENE OXIDE/PEDOT:PSS COMPOSITE FOR BRAIN DISORDER MONITORING

Seung Hyeon Ko^{1,2}, Seung Wook Kim², and Yi Jae Lee¹

¹Korea Institute of Science and Technology (KIST), KOREA and ²Korea University, KOREA

W5-576.c ANALYSIS OF ELECTRICAL PROPERTIES OF THE CELLS USING ELECTROROTATION AND LENS-FREE IMAGE DETECTION

Camila D.M. Campos^{1,2}, Yuqian Li¹, Ziduo Lin¹, Geert Vanmeerbeeck¹, Pawel Barmuta^{2,3}, Tomislav Markovic^{1,2}, Rahul Yadav^{1,2}, Giovanni Mangraviti¹, Willem Van Roy¹, Ilja Ocket¹, Yao Hong Liu¹, Tim Stakenborg¹, Richard Stahl¹, Liesbet Lagae^{1,2}, Jan Genoe^{1,2}, and Chengxun Liu¹ *Ilmec, BELGIUM, ²KU Leuven, BELGIUM, and 3Warsaw University of Technology, POLAND*

W5-577.c MICROFLUIDIC CHIP FOR THE ELECTROCHEMICAL DETECTION OF MICRORNAS: STUDY OF THE SPECIFICITY

Claire Poujouly¹, Pedro Gonzalez Losada¹, Sébastien Banzet², and Jean Gamby¹

¹Université Paris-Saclay, FRANCE and ²Institut de Recherche Biomédicale des Armées, FRANCE

W6-677.c A MINIATURE ON-CHIP MICROSCOPE

Ekta Prajapati and Shishir Kumar

Indian Institute of Technology, Hyderabad, INDIA

Th7-776.c CAN WE MAKE POROUS SILICON BIOSENSORS MORE SENSITIVE? MODELING AND LIMITATIONS

Sofia Arshavsky-Graham^{1,2}, Evgeniy Boyko¹, Rachel Salama¹, and Ester Segal¹ *Technion-Israel Institute of Technology, ISRAEL*

Th8-874.c INTEGRATION OF PLASMONICS AND ELECTRONICS FOR DYNAMIC TRAPPING AND SENSING OF BIOMOLECULES

Daehan Yoo¹, Avijit Barik¹, Fernando de Léon-Pérez^{2,3}, Daniel A. Mohr¹, Matthew Pelton⁴, Luis Martín-Moreno³, and Sang-Hyun Oh¹

¹University of Minnesota, Minneapolis, USA, ²Centro Universitario de la Defensa de Zaragoza, SPAIN, ³Universidad de Zaragoza, SPAIN, and ⁴University of Maryland, Baltimore County, USA

d - Integrated Microfluidic Platforms

Electrophoretic & Chromatographic Separation

M1-134.d MIXED-SCALE FLUIDIC SYSTEM FOR POINT-OF-CARE TESTING

Steven A. Soper¹, Michael C. Murphy², and Sunggook Park²
¹University of Kansas, USA and ²Louisiana State University, USA

M2-232.d 3D PRINTING FOR ENHANCED FABRICATION OF MICROFLUIDIC FREE-FLOW ELECTROPHORESIS

John-Alexander Preuss and Janina Bahnemann Leibniz Universität, Hannover, GERMANY

M2-233.d OVERCOMING MASS TRANSFER LIMITATIONS BY INTRODUCING VORTEX CHROMATOGAPHY

Eiko Y. Westerbeek^{1,2}, Guillermo Gonzalez Amaya¹, Wouter Olthuis², Jan C.T. Eijkel², and Wim de Malsche¹ *Vrije Universiteit Brussel, BELGIUM and ²University of Twente, THE NETHERLANDS*

T3-333.d A MEDIUM THROUGHPUT SYSTEM FOR MEASUREMENT OF ISLET SECRETIONS

Yao Wang, Weijia Leng, and Michael G. Roper *Florida State University, USA*

T3-334.d SUMMIT: A SEMI-AUTOMATED PROTEIN PEAK QUANTIFICATION ALGORITHM FOR HIGH-THROUGHPUT SINGLE-CELL ELECTROPHORESIS

Julea Vlassakis¹, Kevin A. Yamauchi^{1,2}, and Amy E. Herr¹

¹University of California, Berkeley, USA and

²Friedrich Miescher Institute for Biomedical Research, SWITZERLAND

T4-433.d A MICROFLUIDIC IN-SITU SAMPLING PROBE INTEGRATED WITH LIQUID CHROMATOGRAPHIC SEPARATION CAPACITY FOR MASS SPECTROMETRY ANALYSIS

Di-Qiong Jin, Shao-Wen Shi, Yan Ma, and Qun Fang Zhejiang University, CHINA

W5-532.d A MONOLITHIC 3D PRINTED µFFE DEVICE WITH INTEGRATED SWAB RECEPTACLE FOR ENRICHMENT OF MULTIDRUG-RESISTANT PATHOGENS

Christian Neubert¹, Ole Behrmann¹, Denny Maaz², Frank T. Hufert¹, and Gregory Dame¹

Brandenburg Medical School Theodor Fontane, GERMANY and

German Federal Institute for Risk Assessment, GERMANY

W6-632.d DETECTING CELL DEATH BY ELECTROPHORETIC CYTOMETRY

Ana E. Gomez Martinez and Amy E. Herr *University of California, Berkeley, USA*

Th7-732.d DEVELOPMENT OF A NOVEL MICROFLUIDIC APPROACH FOR RAPID AND CONTINUOUS DETECTION OF PATHOGENS IN FOOD AND WATER SAMPLES

Gurpreet Klar, Crystal M. Han, and Liat Rosenfeld San Jose State University, USA

Th8-832.d INTEGRATED SAMPLE PREPARATION FOR HIV MOLECULAR TESTING IN A PAPER-BASED DEVICE

Andrew T. Bender¹, Benjamin P. Sullivan¹, Jane Y. Zhang¹, Lorraine Lillis², David S. Boyle², and Jonathan D. Posner¹

¹University of Washington, USA and ²PATH, USA

d - Integrated Microfluidic Platforms

Particle Separation

M1-135.d HIGH THROUGHPUT EXTRACELLULAR VESICLE SORTING USING ELECTROKINETIC DETERMINISTIC LATERAL DISPLACEMENT

Bao D. Ho, Jason P. Beech, and Jonas O. Tegenfeldt *Lund University, SWEDEN*

M1-136.d PARTICLE MANIPULATION USING PROGRAMMABLE HYDRODYNAMIC FORCES

Ankur Kislaya, Daniel S.W. Tam, and Jerry Westerweel *Delft University of Technology, THE NETHERLANDS*

M2-234.d HIGH THROUGHPUT ISOLATION OF SMALL EXTRACELLULAR VESICLES FROM WHOLE BLOOD USING MULTIPLEXED SPIRAL MICROFLUIDICS (ExoDFF^{HT})

Sheng Yuan Leong¹, Hui Min Tay¹, Megha Upadya¹, Fang Kong¹, Rinkoo Dalan², Dao Ming^{1,3}, and Han Wei Hou¹

¹Nanyang Technological University, SINGAPORE, ²Tan Tock Seng Hospital, SINGAPORE, and ³Massachusetts Institute of Technology, USA

M2-235.d POROUS PDMS SUBSTRATE-ASSISTED PARTICLE SORTING BASED ON HYDRODYNAMIC CROSS-FLOW MICROFLUIDIC FILTRATION

Yurika Sakurai, Takeru Sato, Masumi Yamada, and Minoru Seki Chiba University, JAPAN

T3-335.d HIGH-THROUGHPUT CONTINUOUS INERTIAL FOCUSING OF MICROALGAE IN ASYMMETRIC SERPENTINE CHANNELS

Mohammad Al-Hurani, Rodney Forster, Nicole Pamme, and Alex Iles *University of Hull, UK*

T3-336.d SCALING OF DLD DEVICES FOR CELL FRACTIONATION DOWN TO A SINGLE COLUMN FOR ULTRAHIGH THROUGHPUT PER AREA

Weibin Liang, Robert H. Austin, and James C. Sturm *Princeton University*, *USA*

T4-434.d DETERMINISTIC LATERAL DISPLACEMENT OCCURS WITHOUT CONTACT AT INERTIAL FLOW RATES

William J. Monck¹, Calum P. Mallorie², Rohan R. Vernekar², Timm Krüger², and David W. Inglis¹ *Macquarie University, AUSTRALIA and ²University of Edinburgh, UK*

T4-435.d MANIPULATION OF BIOMOLECULES USING A 3D-PRINTED INSULATOR-BASED DIELECTROPHORESIS DEVICE

Mohammad Towshif Rabbani, Mukul Sonker, Jorvani Cruz Villarreal, and Alexandra Ros *Arizona State University, USA*

T4-436.d SHAPE BASED CHROMOSOME SEPARATION IN THE INERTIAL FOCUSING DEVICE

Haidong Feng, Bruce Gale, Himanshu Sant *University of Utah, USA*

W5-533.d DETERMINISTIC LATERAL DISPLACEMENT SYSTEMS WITH ARRAYED THREE-DIMENSIONAL ELECTRODES FOR TUNABLE PARTICLE SORTING

Gloria Porro¹, Kevin Keim¹, Giovanni Cappai¹, Jason P. Beech², Jonas O. Tegenfeldt², and Carlotta Guiducci¹ *École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND and 2Lund University, SWEDEN*

W5-534.d OPERATING SPIRAL INERTIAL MICROFLUIDICS AT CONCENTRATIONS UP TO 3.4X10⁹ CELLS/ML FOR HIGH-CONCENTRATION DEWATERING OF *CHLORELLA VULGARIS*

Catherine Hill, Nik Willoughby, and Helen Bridle *Heriot-Watt University*, *UK*

W5-535.d STREAM BIFURCATION INDUCED BLOOD CELL SEPARATION IN SEMI-DILUTED VISCOELASTIC FLOW

Haidong Feng, Jules Magda, and Bruce K. Gale *University of Utah, USA*

W6-633.d DEVELOPING MICROFLUIDIC DEVICES AND TECHNIQUES FOR ISOLATION AND DETECTION OF EXTRACELLULAR VESICLES (EVS)

Himayasri Rao Lekkala¹, Ian Johnston¹, Nikolay Dimov¹, and Jameel Inal^{2,3}
¹University of Hertfordshire, UK, ²School of Life and Medical Sciences, UK, and ³London Metropolitan University, UK

W6-634.d PAPER-BASED PUMP-FREE MAGNETOPHORESIS

Zachary D. Call, Cody S. Carrell, Ilhoon Jang, Brian J. Geiss, David S. Dandy, and Charles S. Henry *Colorado State University, USA*

W6-635.d UPSCALING OF DIELECTROPHORETIC CONTINUOUS-FLOW DNA SEPARATION IN A MICROFLUIDIC SYSTEM

Jakob Derksen, Dario Anselmetti, and Martina Viefhues Bielefeld University, GERMANY

Th7-733.d FLOW FIELD-ASSISTED MICROFLUIDIC CHIP FOR THE SHEATHLESS SEPARATION OF MICROPARTICLES AND CELLS

Shitao Shen¹, Mingliang Jin¹, Zichuan Yi², Xing Li¹, Zhibin Yan¹, Guofu Zhou¹, and Lingling Shui^{1,2}

¹South China Normal University, CHINA and

²University of Electronic Science and Technology of China, CHINA

Th7-734.d PARTICLE AND PATHOGEN FOCUSING AND PRE-ENRICHMENT IN ASYMMETRICALLY CURVED WINDING CHANNELS VIA INERTIAL MICROFLUIDICS

Pablo Rodriguez-Mateos, Charlotte E. Dyer, Alexander Iles, and Nicole Pamme *University of Hull, UK*

Th8-833.d HIGH THROUGHPUT CLOGGING-FREE MICROFLUIDIC PARTICLE FILTER BY FEMTOSECOND LASER MICROMACHINING

Filippo Storti^{1,2}, Silvio Bonfadini¹, and Luigino Criante¹

¹Istituto Italiano di Tecnologia, ITALY and ²Politecnico di Milano, ITALY

Th8-834.d PARTICLE MIGRATION IN SHEAR THINNING VISCOELASTIC FLUID

Shamik Hazra¹, Sushanta K. Mitra², and Ashis Kumar Sen¹
¹Indian Institute of Technology, Madras, INDIA and ²University of Waterloo, CANADA

d - Integrated Microfluidic Platforms

Micromixers & Microreactors

M1-137.d HIGH-THROUGHPUT 3D GLASS MICROMIXER WITH AN IMPELLER MONOLITHICALLY FABRICATED USING SELECTIVE LASER-INDUCED ETCHING (SLE)

Sungil Kim^{1,2}, Jeongtae Kim¹, Yeun-Ho Joung¹, Sanghoon Ahn², Jiyeon Choi², and Chiwan Koo¹

¹Hanbat National University, KOREA and ²Korea Institute of Machinery and Materials (KIMM), KOREA

M2-236.d STUDY OF LIQUID PHASE OXIDATIVE DEGRADATION OF LIGNIN IN MICROFLUIDIC AND BATCH REACTOR

Niloofar Manafi and Neda Nazemifard *University of Alberta, CANADA*

T3-337.d THE INFLUENCE OF SHEAR ON THE POLYMORPHISM OF ROY UNDER CONSTANT SHEAR CONDITIONS

Sander Stroobants, Marzena Krezk, Pierre Gelin, Iwona Ziemecka, Yousef Pourvais, Heidi Ottevaere, Wim De Malsche, and Dominique Maes *Vrije Universiteit Brussel, BELGIUM*

T4-437.d THERMAL MANIPULATION FOR A SINGLE CELL UTILIZING AREA COOLING

Yigang Shen^{1,2}, Yaxiaer Yalikun^{1,3}, Yusufu Aishan^{1,2}, and Yo Tanaka^{1,2}
¹RIKEN, JAPAN, ²Osaka University, JAPAN, and ³Nava Institute of Science and Technology, JAPAN

Th7-735.d DEVELOPMENT OF A PILLAR ARRAY MIXER FOR POST-COLUMN DERIVATIZATION ON A CHIP

Makoto Tsunoda, Muneki Isokawa, and Takashi Funatsu *University of Tokyo, JAPAN*

Th8-835.d ENHANCEMENT OF PHOTOCATALYTIC REACTION ASSISTED BY NANOELECTROKINETICS

Cong Wang and Jungyul Park Sogang University, KOREA

d - Integrated Microfluidic Platforms Chemical & Particle Synthesis

M1-138.d PHOTOCHEMISTRY IN AN ASSEMBLY OF 108 MICROMETRIC CAPILARIES (id 3.65μm) GRAFTED WITH A PHOTOSENSITIZER

Christian Rolando, Fabien Gelat, Christophe Penverne, Maël Penhoat, Géraud Bouwmans, and Laëtitia Chausset-Boissarie *Université de Lille, FRANCE*

W5-536.d A BOLT-NUT MICROREACTOR FOR THE SYNTHESIS OF CuIns₂/ZnS QUANTUM DOTS

Hyunbin Kim and Do Hyun Kim

Korea Advanced Institute of Science and Technology (KAIST), KOREA

W6-636.d A CONTINUOUS PLATFORM FOR EMBEDDED DROPLET PRINTING OF PHARMACEUTICAL PARTICLES

Arif Z. Nelson¹, Jiaxun Xie², Saif A. Khan², and Patrick S. Doyle³

¹Singapore-MIT Alliance for Research and Technology (SMART) Centre, SINGAPORE,

²National University of Singapore, SINGAPORE, and ³Massachusetts Institute of Technology, USA

Th7-736.d CHEMOENZYMATIC MICROFLUIDIC CASCADE REACTION: COUPLING OF A DIELS-ALDER REACTION WITH A TRANSKETOLASE-CATALYZED REACTION

Mariana Santos¹, Brian O'Sullivan¹, Sarah Müller², Alina Bunescu², Frank Baganz¹, Marco P.C. Marques¹, Helen Hailes¹, Nicolas Szita¹, and Roland Wohlgemuth³

¹University College London, UK, ²Sigma-Aldrich, GERMANY, and ³Technical University, Lodz, GERMANY

Th8-836.d DEVELOPMENT OF SYNTHESIS ROUTES TO HUMAN DRUG METABOLITES USING IMMOBILISED ENZYMATIC REACTIONS WITHIN MICROFLUIDIC REACTORS

Bradley Doyle¹, Leigh A. Madden¹, Nicole Pamme¹, and Huw S. Jones²
¹University of Hull, UK and ²University of Bradford, UK

d - Integrated Microfluidic Platforms Other Applications in Chemistry

M1-139.d DEVELOPMENT OF AN OPTIC MICRO-RHEOMETER USING MULTILAYER PMMA CARTRIDGES AND MODULAR POLYMERIC MICROPUMPS

Yara Alvarez-Braña¹, Josep Ferre-Torres², Andreu Benavent-Claro², Francisco Palacio-Bonet², Fernando Benito-Lopez¹, Mauricio Moreno-Sereno², Aurora Hernandez-Machado², and Lourdes Basabe-Desmonts^{1,3}

¹University of the Basque Country, SPAIN, ²University of Barcelona, SPAIN, and

³Basque Foundation of Science, IKERBASQUE, SPAIN

M2-237.d A DEVICE FOR URINE CELL CONCENTRATION, LYSIS AND NUCLEIC ACID AMPLIFICATION FOR CHLAMYDIA DETECTION AT THE POINT OF CARE

Steven Bennett, Sujatha Kumar, Erin Heiniger, and Paul Yager *University of Washington, USA*

M2-238.d HYBRID MONOLITHS SUPPORTED ON FDM-BASED 3D-PRINTED SCAFFOLDS

Marcella E.P. Schmidt, Lucas P. Bressan, José A.F. da Silva, and Carla B.G. Bottoli *State University of Campinas, BRAZIL*

T3-338.d A DISPOSABLE INTEGRATED DIAGNOSTIC DEVICE FOR BLOOD ACQUISITION, SAMPLE PROCESSING, LYSIS, AND DETECTION OF EBOLA VIRUS MARKERS

Sujatha Kumar, Steven Bennett, Shichu Huang, Joshua Buser, and Paul Yager *University of Washington, USA*

T3-339.d PRE-CONCENTRATION WITH ELECTROSPUN MEMBRANES COUPLED WITH PAPER-BASED ASSAYS TOWARDS ONSITE MONITORING OF HEAVY METALS IN WATER

Bongkot Ngamsom, Samantha Richardson, Mila Sari, Alexander Iles, Mark Lorch, Will M. Mayes, and Nicole Pamme

University of Hull, UK

T4-438.d A MONOLITHIC WEARABLE SYSTEM DESIGN METHODOLOGY FOR PHYSIOLOGICAL ACTUATION AND ELECTROCHEMICAL SENSING

Hannaneh Hojaiji, Yichao Zhao, Max C. Gong, Mudith Mallajosyula, Amir M. Hojaiji, Asad M. Madni, and Sam Emaminejad

University of California, Los Angeles, USA

W5-537.d ACCELERATED MICROFLUIDIC STUDIES OF SWITCHABLE HYDROPHILICITY SOLVENTS

Suyong Han, Mahdi Ramezani, and Milad Abolhasani

North Carolina State University, USA

W6-637.d AMYLOID & ANALYSIS FROM MICRODISSECTED BRAIN CELLS USING MICROFLUIDICS AND MALDI MASS SPECTROMETRY

Jorvani Cruz Villarreal, Ana Egatz-Gomez, Jiawei Liu, Robert Ros, Paul D. Coleman, and Alexandra Ros *Arizona State University, USA*

Th7-737.d AN INTEGRATED CENTRIFUGAL DEGASSED PDMS-BASED MICROFLUIDIC DEVICE FOR SERIAL DILUTION

Anyang Wang, Samaneh Moghadasi Boroujeni, Stelios T. Andreadis, and Kwang W. Oh *University at Buffalo, USA*

Th8-837.d DEVELOPING THE FUTURE OF CLINICAL RADIOPHARMACY: OPTIMISING ON-CHIP GALLIUM-68 RADIOLABELLING FOR PET IMAGING

Vincent Nail, Mark D. Tarn, Ping He, Nicole Pamme, and Stephen J. Archibald *University of Hull, UK*

d - Integrated Microfluidic Platforms

Industrial Benefactor

W5-538.d HOLIFAB: MICROFLUIDIC INTEGRATION PILOT LINE AND CAD SOFTWARE FOR COMMERCIALIZATION OF YOUR MICROFLUIDIC SET-UP

Nicolas Lafitte, Mikael Trellet, Ygor Oliveira, Benjamin Rouffet, Serge Renouard, and Jean-Louis Viovy Holifab/Fluigent, FRANCE

d - Integrated Microfluidic Platforms

Late News

M1-178.d MULTI-LAYERED CLASSIFICATION BY DNA BASED COMPUTING WITH DROPLET PLATFORM

Shu Okumura¹, Guillaume Gines², Nicolas Lobato-Dauzier¹, Robin Deteix¹, Alexandre Baccouche¹, Teruo Fujii¹, Yannick Rondelez², and Anthony J. Genot¹

¹University of Tokyo, JAPAN and ²ESPCI Paris, FRANCE

W6-678.d HIGHLY EFFICIENT EXOSOME PURIFICATION FROM HUMAN PLASMA BY TANGENTIAL FLOW FILTRATION BASED MICROFLUIDIC CHIP

Zhenzhen Han¹, Cheng Peng², Jia Yi¹, Dongxue Zhang¹, Bin Su³, Baohong Liu¹, Yuhui Shen², and Liang Qiao¹ Fudan University, CHINA, ²Shanghai Jiao Tong University School of Medicine, CHINA, and ³Zhejiang University, CHINA

Th7-777.d DROPLET MICROFLUIDICS TO ENGINEER SMART BUILDING BLOCKS FOR MODULAR TISSUE ENGINEERING

Niels Willemen, Tom Kamperman, Cindy Kelder, Michelle Koerselman, João Crispim, Jan Hendriks, Sieger Henke, Xandra De Peuter, Piet Dijkstra, Marcel Karperien, and Jeroen Leijten *University of Twente, NETHERLANDS*

Th8-875.d INTEGRATED IMPEDANCE SENSORS IN A MICROFLUIDIC SYSTEM: TOWARD A FULLY AUTOMATED HIGH THROUGHPUT NMR SPECTROSCOPY

Omar Nassar, Mazin Jouda, Jan Korvink, Dario Mager, and Neil Mackinnon *Karlsruhe Institute of Technology, GERMANY*

e - Cells, Organisms and Organs on a Chip Cell Capture, Counting, & Sorting

M1-140.e FULLY-AUTOMATED AND FIELD-DEPLOYABLE BLOOD SEPARATION PLATFORM USING MULTI-DIMENSIONAL DOUBLE SPIRAL (MDDS) INERTIAL MICROFLUIDICS

Hyungkook Jeon^{1,2} and Jongyoon Han¹

¹Massachusetts Institute of Technology, USA and ²Pohang University of Science and Technology, KOREA

M1-141.e PORTABLE PLATELET APHERESIS SYSTEM

Lap Man Lee, Ketan H. Bhatt, Dustin W. Haithcock, Balabhaskar Prabhakarpandian, and Kapil Pant *CFD Research Corporation, USA*

M1-142.e ULTRASENSITIVE DETECTION AND DEPLETION OF RARE LEUKEMIC B CELLS IN T CELL POPULATIONS VIA MICROFLUIDICS-MEDIATED IMMUNOMAGNETIC CELL RANKING

Zongjie Wang and Shana O. Kelley *University of Toronto, CANADA*

M2-239.e GENTLE TRAP-AND-RELEASE MECHANISM FOR MULTISTEP CELL PROCESSING USING PDMS SPONGE-INTEGRATING MICROFLUIDIC DEVICES

Natsumi Miura, Masumi Yamada, and Minoru Seki *Chiba University, JAPAN*

M2-240.e RARE CELLS ISOLATION ON SACA CHIP FOR AUTOMATIC CELLS ANALYSIS

Yi-Wen Hu¹, Ping-Hao Yeh¹, Hsin-Yao Wu¹, and Fan-Gang Tseng^{1,2}
¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

T3-340.e HIGH-THROUGHPUT LIVE CELL PRINTING SYSTEM USING NEAR INFRA-RED PULSE LASER

Amos Chungwon Lee, Wooseok Lee, Yongju Lee, Ahyoun Choi, Sudeok Kim, Kyoung Seob Shin, and Sunghoon Kwon

Seoul National University, KOREA

T3-341.e SAFELY SORTING AND ISOLATING RARE SPERM USING DIELECTROPHORESIS BY TRAPPING THE TAIL AND SIMULTANEOUSLY DISTANCING THE HEAD FROM STRONG ELECTRIC FIELDS

Sholom Shuchat¹, Ofer Fainaru², Shahar Kol³, and Gilad Yossifon¹

¹Technion – Israel Institute of Technology, ISRAEL, ²Rappaport Faculty of Medicine, ISRAEL, and ³Elisha Hospital, Haifa Israel, ISRAEL

T4-439.e A DROPLET-BASED DETECTION AND SORTING OF CELLS UTILIZING OPTOFLUIDICS AND ELECTRO- COALESCENCE TECHNIQUE

Ravindra Gaikwad and Ashis K. Sen

Indian Institute of Technology, Madras, INDIA

T4-440.e HIGH-THROUGHPUT SINGLE-CELL QUANTIFICATION OF ELASTIC MODULUS

Ryan Dubay^{1,2}, Jason Fiering², and Eric M. Darling¹

Brown University, USA and **Draper, USA

T4-441.e SELECTIVE RETRIEVAL OF INDIVIDUAL CELLS FROM MICROFLUIDIC ARRAYS COMBINING DIELECTROPHORETIC FORCE AND DIRECTED HYDRODYNAMIC FLOW

Pierre-Emmanuel Thiriet, Joern Pezoldt, Gabriele Gambardella, Kevin Keim, Bart Deplancke, and Carlotta Guiducci

École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

W5-539.e CELL SORTING ACROSS LAMINAR INTERFACE USING STIFFNESS CONTRAST

Shamik Hazra¹, Sushanta K. Mitra², and Ashis Kumar Sen¹

¹Indian Institute of Technology, Madras, INDIA and ²University of Waterloo, CANADA

W5-540.e LABEL-FREE SINGLE-CELL CAPTURE AND RELEASE VIA A FIRST-IN FIRST-OUT MICROFLUIDIC CELL ROUTER

Nathaniel Liu, Kristina Chan, and Lydia L. Sohn

University of California, Berkeley, USA

W5-541.e SINGLE CELL PER WELL TRAPPING AND ANALYSIS OF CHLAMYDOMONAS REINHARDTII USING SURFACE ACOUSTIC WAVES

Mingyang Cui, Philip V. Bayly, Susan K. Dutcher, and J. Mark Meacham *Washington University, St. Louis, USA*

W6-638.e DEFORMABILITY BASED CELL SORTING AS A BIOMARKER FOR THE QUALITY OF STORED RED BLOOD CELLS

Emel Islamzada¹, Kerryn Matthews¹, Erik Lamoureux¹, Quan Guo¹, Aline T. Santoso¹, Mark D. Scott^{1,2}, and Hongshen Ma^{1,3}

¹University of British Columbia, CANADA, ²Canadian Blood Services, CANADA, and

³Vancouver General Hospital, CANADA

W6-639.e MICROFLUIDIC MEDIUM EXCHANGER WITH MICROPORED FLUID DRAINAGE FOR CELL CULTURE APPLICATIONS

Takeru Sato, Yurika Sakurai, Masumi Yamada, and Minoru Seki Chiba University, JAPAN

W6-640.e SPIRAL MICROFLUIDICS ENHANCED ISOLATION OF EPITHELIAL CELLS FROM INFECTED MICE URINE

Suhanya Duraiswamy¹, Lin Yue Lanry Yung², and Swaine L. Chen²

¹Indian Institute of Technology, Hyderabad, INDIA, ²National University of Singapore, SINGAPORE, and ³Genome Institute of Singapore, SINGAPORE

Th7-738.e FABRICATION OF CMOS-COMPATIBLE GRAPHENE MICROHALL SENSORS FOR MAGNETIC CYTOMETRY

Nishal Shah, Vasant Iyer, and David Issadore *University of Pennsylvania, USA*

Th7-739.e MICROFLUIDIC TRAP ARRAYS FOR PROBING STOCHASTIC IMMUNE-TUMOR DYNAMICS

Michael C. Yeh^{1,2}, Emanuel Salazar Cavazos², Supriya Padmanabhan¹, Grégoire Altan-Bonnet², and Don L. DeVoe¹

¹University of Maryland, College Park, USA and ²National Cancer Institute, USA

Th7-740.e TECHNIQUE FOR PASSIVE DROPLET SORTING AFTER PHOTO-TAGGING

Chandler Dobson, Claudia Zielke, Ching Pan, Cameron Feit, and Paul Abbyad Santa Clara University, USA

*poster will be presented during the M2 poster session on Monday

Th8-838.e FERTDISH: MICROFLUIDIC SPERM SELECTION-IN-A-DISH FOR ICSI

Sa Xiao¹, Jason Riordon¹, Alexander Lagunov², Tom Hannam², Reza Nosrati³, and David Sinton¹

¹University of Toronto, CANADA, ²Hannam Fertility Centre, CANADA, and ³Monash University, AUSTRALIA

Th8-839.e PAIRING CELLS WITH DIFFERENT DIMENSIONS IN A MICROFLUIDIC DEVICE USING A UNIDIRECTIONAL FLOW

Faruk A. Shaik¹, Clara Lewuillon^{1,2}, Yasmine Touil^{1,2}, Aurélie Guillemette^{1,2}, Bruno Quesnel^{1,2}, Carine Brinster^{1,2}, Loic Lemonnier², Dominique Collard³, and Mehmet C. Tarhan^{1,4}

¹University of Lille, FRANCE, ²INSERM, FRANCE, ³University of Tokyo, FRANCE, and

⁴University Valenciennes, FRANCE

Th8-840.e THE EFFECT OF ELEVATED HEMATOCRIT ON HUMAN BLOOD FLOW IN A MICROCHANNEL

Md Ehtashamul Haque^{1,2}, Krystian Wlodarczyk¹, Duncan P. Hand¹, Miguel O. Bernabeu², and Maïwenn Kersaudy-Kerhoas^{1,2}

¹Heriot Watt University, UK and ²Edinburgh University, UK

e - Cells, Organisms and Organs on a Chip Single-Cell Analysis

M1-143.e LABEL-FREE ASSESSMENT OF CELL CYCLE SYNCHRONIZATION IN NEURAL PROGENITOR CELLS BY IMPEDANCE CYTOMETRY

Carlos Honrado, Nadine Michel, John H. Moore, Armita Salahi, Veronica Porterfield, Michael J. McConnell, and Nathan S. Swami *University of Virginia, USA*

M1-144.e ELECTROROTATION FOR SINGLE CELL ANALYSIS OF MEMBRANE DAMAGE INDUCED BY TOXINS MIMICKING THE NEURODEGENERATIVE EFFECT OF AMYLOID BETA IN THE ALZHEIMER'S DISEASE

Till Ryser, Kevin Keim, Anne-Laure Mahul-Mellier, Hilal Lashuel, and Carlotta Guiducci École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

M1-145.e MICROFLUIDIC HANGING PILLARS ARRAYS FOR SINGLE-CELL ANALYSIS OF OSMOTIC SWELLING DYNAMICS AS PHYSICAL BIOMARKERS

Apresio K. Fajrial, Kun Liu, Yu Gao, and Xiaoyun Ding *University of Colorado, Boulder, USA*

M1-146.e SPATIALLY RESOLVED GENOMICS FROM SINGLE CELLS WITH DISTINCT FLUORESCENT SIGNALS USING TRANSPOSASE-BASED DIRECT LIBRARY PREPARATION

Ahyoun Choi¹, Amos Chungwon Lee¹, Yongju Lee¹, Jinhyun Kim¹, Kyoung Seob Shin¹, Dajeong Jeong², Myoung Hee Ham², Sung-Min Kim³, Okju Kim⁴, Yushin Jung⁴, Changhoe Kim⁴, Taehoon Ryu⁴, Dongsoon Lee^{2,3}, and Sunghoon Kwon¹

¹Seoul National University, KOREA, ²Seoul National University Hospital, KOREA, ³Seoul National University College of Medicine, KOREA, and ⁴Celemics, Inc., KOREA

M2-241.e 3D PROJECTION ELECTROPHORESIS FOR HIGH-DENSITY SINGLE-CELL IMMUNOBLOTTING

Samantha M. Grist, Andoni P. Mourdoukoutas, and Amy E. Herr *University of California, Berkeley, USA*

M2-242.e BIOMECHANICAL MARKERS FOR MONITORING HETEROGENEITY IN ISLET REORGANIZATION DYNAMICS WITH ADIPOSE STEM CELLS

Karina Torres-Castro, Mohammad S. Azimi, Walter B. Varhue, Carlos Honrado, Shayn M. Pierce-Cottler, and Nathan S. Swami *University of Virginia, USA*

M2-243.e HIGH-THROUGHPUT QUANTIFICATION OF SINGLE-CELL CORTICAL TENSION USING MUTIPLE CONSTRCTION CHANNELS

Ke Wang¹, Yan Liu^{2,3}, Xiaohao Sun⁴, Deyong Chen^{2,3}, Junbo Wang^{2,3}, and Jian Chen^{2,3}
¹Beijing University of Posts and Telecommunications, CHINA, ²Chinese Academy of Sciences, CHINA, ³University of Chinese Academy of Sciences, CHINA, and ⁴University of Colorado Boulder, USA

M2-244.e MONITORING THE GROWTH PHASES OF MICROALGAE USING STRAIGHTFORWARD DIELECTROPHORESIS MEASUREMENTS

Yu-Sheng Lin^{1,2}, Bruno Le Pioufle², and Hsiang-Yu Wang¹
¹National Tsing Hua University, TAIWAN and ²Université Paris Saclay, FRANCE

M2-245.e SPATIALLY TARGETED WHOLE TRANSCRIPTOME ACCESSIBLE IN SITU SEQUENCING

Kyoungseob Shin², Hower Lee¹, Yongju Lee¹, Ahyoun Choi², Amos Chungwon Lee², Narayanan Madaboosi¹, Mats Nilsson¹, and Sunghoon Kwon²

¹Stockholm University, SWEDEN and ²Seoul National University, KOREA

T3-342.e A DUAL IMAGING SYSTEM FOR UNDERSTANDING MICROSWIMMER LOCOMOTION

Farzan Akbaridoust^{1,2}, Ivan Marusic², and Reza Nosrati¹
¹Monash University, AUSTRALIA and ²University of Melbroune, AUSTRALIA

T3-343.e CONSTRICTION CHANNEL BASED MICROFLUIDIC SYSTEM OF QUANTIFYING SINGLE-CELL CYTOPLASMIC VISCOSITY, CYTOPLASMIC CONDUCTIVITY AND SPECIFIC MEMBRANE CAPACITANCE

Yan Liu¹, Ke Wang², Xiaohao Sun³, Deyong Chen¹, Junbo Wang¹, and Jian Chen¹

¹Chinese Academy of Sciences, CHINA, ²Beijing University of Posts and Telecommunications, CHINA, and ³University of Colorado Boulder, USA

T3-344.e IMPEDANCE CYTOMETRY OF APOPTOTIC BODIES TO QUANTIFY DRUG SENSITIVITY OF PANCREATIC TUMOR XENOGRAFTS

Carlos Honrado, John H. Moore, Sara J. Adair, Armita Salahi, Todd W. Bauer, and Nathan S. Swami *University of Virginia, USA*

T3-345.e MULTIPLEXED RESISTIVE-PULSE SENSING THROUGH CODED NODE-PORE CHANNEL GEOMETRY

Kristen L. Cotner¹ and Lydia L. Sohn^{1,2}

 ^{1}UC Berkeley - UCSF Graduate Program in Bioengineering, USA and $^{2}University$ of California, Berkeley, USA

T3-346.e VIBRATIONAL FLOW CYTOMETRY ON A CHIP: A LABEL-FREE TOOL FOR METABOLIC PHENOTYPING

Julia Gala de Pablo¹, Matthew Lindley¹, Kotaro Hiramatsu^{1,2}, Akihiro Isozaki^{1,2}, and Keisuke Goda^{1,3,4}
¹University of Tokyo, JAPAN, ²Kanagawa Institute of Industrial Science and Technology, JAPAN,
³University of California, Los Angeles, USA, and ⁴Wuhan University, JAPAN

T4-442.e A GENETIC NETWORK FOR THE COMMUNICATION AND SYNCHRONIZATION OF NEUROSPORA CRASSA

Xiao Qiu, Jia Hwei Cheong, Heinz-Bernd Schüttler, Jonathan Arnold, and Leidong Mao *University of Georgia, USA*

T4-443.e DETECTING MULTIPLEX MUTATION IN SINGLE MELANOMA CELLS USING MOLECULAR BEACONS IN LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (MB-LAMP)

Darshna Pagariya, Marcelino Varona, Jared L. Anderson, and Robbyn K. Anand *Iowa State University, USA*

T4-444.e MACHINE LEARNING-ENABLED HIGH-SPEED IMPEDANCE CYTOMETRY

Federica Caselli¹, Adele De Ninno^{1,2}, Riccardo Reale¹, Luca Businaro², and Paolo Bisegna¹ *University of Rome Tor Vergata, ITALY and ²Italian National Research Council, ITALY*

T4-445.e OCEAN CARBON CYCLE STUDIED BY SINGLE-CELL IMPEDANCE CYTOMETRY ON CALCIFYING ALGAE

Douwe S. de Bruijn¹, Paul M. ter Braak¹, Dedmer B. Van de Waal², Wouter Olthuis¹, and Albert van den Berg¹ *University of Twente, THE NETHERLANDS and* ²*Netherlands Institute of Ecology (NIOO-KNAW), THE NETHERLANDS*

W5-542.e A HIGH-THROUGHPUT MEMS DEVICE FOR MECHANICAL DETECTION OF CANCER CELLS

Quentin Rezard^{1,2}, Grégoire Perret^{1,3}, Jean Claude Gerbedoen^{1,3}, Deniz Pekin^{3,4}, Dominique Collard^{1,3}, Chann Lagadec^{1,4}, and Mehmet C. Tarhan^{1,2}

**Illuivarsity of Lilla, FRANCE, ²Univarsity of Valenciannes, FRANCE, ³Univarsity of Tokyo, IAPAN, and

¹University of Lille, FRANCE, ²University of Valenciennes, FRANCE, ³University of Tokyo, JAPAN, and ⁴INSERM, FRANCE

W5-543.e DETERMINISTIC CELL-BEAD AND CELL-CELL PAIRING AND ENCAPSULATION

Rafal Krzysztoń, Martin Sauzade, and Eric Brouzes Stony Brook University, USA

W5-544.e LIGHT-SHEET IN A µTAS FOR SINGLE CELL IMAGING

Erick Vargas-Ordaz¹, Sergey Gorelick¹, Adrian Neild¹, Alex de Marco^{1,2}, and Victor J. Cadarso^{1,3} *Monash University, AUSTRALIA, ²University of Warwick, UK, and* ³*Melbourne Centre for Nanofabrication, AUSTRALIA*

W5-545.e OPTIMIZATION OF MARINE BACTERIA MICROENCAPSULATION FOR THE DISCOVERY OF NOVEL MARINE NATURAL PRODUCTS

Emily Pope, Tartela Alkayyali, Sydney Wheatley, Christopher Cartmell, Jultwahnique MacDonald, Bradley Haltli, Russell G. Kerr, and Ali Ahmadi *University of Prince Edward Island, CANADA*

W6-641.e A HYPERBOLIC MICROFLUIDIC IMPEDANCE CHIP FOR DEFORMABILITY CYTOMETRY

Riccardo Reale¹, Adele De Ninno^{1,2}, Luca Businaro², Paolo Bisegna¹, and Federica Caselli¹ *University of Rome Tor Vergata, ITALY and ²Italian National Research Council, ITALY*

W6-642.e DIRECT QUANTIFICATION OF SINGLE CELL DRUG UPTAKE

Erika J. Fong¹, Nick. R. Hum^{1,2}, Kelly A. Martin¹, Melinda Simon³, Gaby G. Loots^{1,2}, and Ted J. Ognibene¹ Lawrence Livermore National Laboratory, USA, ²University of California, Merced, USA and ³San Jose State University, USA

W6-643.e MACROMOLECULE DELIVERY INTO HARD-TO-TRANSFECT PRIMARY CELLS VIA HYDRODYNAMIC CELL DEFORMATION

Jeongsoo Hur and Aram Chung Korea University, KOREA

W6-644.e PHENOTYPE BASED SELECTIVE SINGLE CELL ISOLATION USING NEAR-INFRARED PULSE LASER FOR SPATIALLY RESOLVED OMICS ANALYSIS

Yongju Lee¹, Amos Chungwon Lee¹, Ahyoun Choi¹, Kyoungseob Shin¹, Okju Kim², Yushin Jung², Changhoe Kim², Taehoon Ryu², and Sunghoon Kwon¹

¹Seoul National University, KOREA and ²Celemics, Inc., KOREA

Th7-741.e A MICROFLUIDIC DEVICE TO MEASURE THE SHEAR ELASTIC MODULUS OF SINGLE RED BLOOD CELLS

Ninad Mehendale¹, Savita Kumari¹, Priyanka Naik¹, Dhrubaditya Mitra^{2,3}, and Debjani Paul¹ Indian Institute of Technology, Bombay, INDIA, ²KTH Royal Institute of Technology, SWEDEN, and ³Stockholm University, SWEDEN

Th7-742.e DROPLET MICROFLUIDICS FOR STUDIES OF BACTERIAL GENETIC TRANSFORMATION IN STREPTOCOCCUS PNEUMONIAE

Trinh Lam, Mark Maienschein-Cline, David T. Eddington, and Donald A. Morrison *University of Illinois, Chicago, USA*

Th7-743.e MARKERS FOR ASTROGENESIS IN HETEROGENEOUS NEURAL STEM CELL SAMPLES BY SINGLE-CELL IMPEDANCE CYTOMETRY

John Moore¹, Carlos Honrado¹, Armita Salahi¹, Alan Jiang², Andrew Yale², Lisa Flannagan², and Nathan S. Swami¹

¹University of Virginia, USA and ²University of California, Irvine, USA

Th7-744.e RED BLOOD CELLS AS MODEL PARTICLES WITH MODULATED SUBCELLULAR ELECTROPHYSIOLOGY FOR IMPEDANCE CYTOMETRY

Armita Salahi, Carlos Honrado, and Nathan S. Swami *University of Virginia, USA*

Th8-841.e ACTIVE PARTICLE BASED SELECTIVE TRANSPORT AND RELEASE OF CELL ORGANELLES AND MECHANICAL PROBING OF A SINGLE NUCLEUS

Yue Wu, Afu Fu, and Gilad Yossifon Technion – Israel Institute of Technology, ISRAEL

Th8-842.e ELECTRICAL SENSING OF SICKLED RED BLOOD CELLS SUBPOPULATIONS IN MICROFLUIDIC DEVICE

Tieying Xu¹, Maria A. Lizarralde-Iragorri², Jean Roman¹, Emile Martincic³, Valentine Brousse², Olivier Français⁴, Wassim El Nemer², and Bruno Le Pioufle¹

¹Université Paris-Saclay, FRANCE, ²Université de Paris, FRANCE, ³Université Paris-Sud, FRANCE, and ⁴University Gustave Eiffel, FRANCE

Th8-843.e MATCHING AND COMPARING OBJECTS IN A SERIAL CYTOMETER

Nikita Podobedov^{1,2}, Matthew DiSalvo^{2,3}, Jason Hsu^{2,4}, Paul Patrone², and Gregory A. Cooksey² ¹Columbia University, USA, ²National Institute of Standards and Technology (NIST), USA, ³Johns Hopkins University, USA, and ⁴Montgomery Blair High School, USA

Th8-844.e SERIAL MICROFLUIDIC CYTOMETRY WITH INERTIAL AND HYDRODYNAMIC FLOW FOCUSING

Matthew DiSalvo^{1,2}, Paul N. Patrone², and Gregory A. Cooksey²

¹Johns Hopkins University, USA and ²National Institute of Standards and Technology (NIST), USA

e - Cells, Organisms and Organs on a Chip

Cell-Culturing & Perfusion (2D & 3D)

M1-147.e AN ENZYME-FREE AND ULTRAFAST CELL-DISSOCIATION TECHNIQUE FOR CELL CULTURE APPLICATIONS USING ACOUSTOFLUIDICS

Alinaghi Salari^{1,2}, Sila Appak-Baskoy^{1,2}, Imogen R. Coe¹, Scott S.H. Tsai^{1,2}, and Michael C. Kolios^{1,2}
¹Institute for Biomedical Engineering, Science and Technology (iBEST), CANADA and
²Ryerson University, CANADA

M1-148.e MODULAR TISSUE ASSEMBLY FOR FABRICATION OF COMPLEX AND SCALED UP TISSUE

Byeongwook Jo, Yuya Morimoto, and Shoji Takeuchi

University of Tokyo, JAPAN

M1-149.e TUNABLE 3D IN VITRO ARTERY-MIMICKING MULTICHANNEL SYSTEM FOR DISEASE MODELING

Minkyung Cho and Je-Kyun Park Korea Advanced Institute of Science and Technology (KAIST), KOREA

M2-246.e DIRECTING SELF-ORGANIZATION AND DIFFERENTIATION OF STEM CELLS USING A MICROMESH SUSPENSION CULTURE

Kennedy O. Okeyo, Yuta Ando, and Taiji Adachi *Kyoto University, JAPAN*

M2-247.e NEW MICROFLUIDIC DESIGNS FOR HIGH-THROUGHPUT ANALYSIS OF ANGIOGENESIS, BLOOD VESSEL PERMEABILITY AND ENDOTHELIAL ACTIVATION

Elise Delannoy^{1,2}, Anthony Treizebre², and Fabrice Soncin¹

¹Lille University, FRANCE and ²University Polytechnique Hauts-de-France, FRANCE

M2-248.e Z-WIRE – A MICRO-SCAFFOLD THAT SUPPORTS GUIDED TISSUE ASSEMBLY AND INTRAMYOCARDIUM DELIVERY FOR CARDIAC REPAIR

Luis E. Portillo-Esquivel, Vibudha Nanduri, Feng Zhang, Wenbin Liang, and Boyang Zhang *McMaster University*, *CANADA*

T3-347.e FLOW-THROUGH CELL CULTURE SYSTEM USING MICROCAVITIES EMBEDDED IN SPONGELIKE PDMS MATRIX

Mai Takagi, Masumi Yamada, and Minoru Seki *Chiba University, JAPAN*

T3-348.e RAPID PROTOTYPING OF CONCAVE MICROWELLS FOR SPHEROID CULTURE BY COMBINING MICROMILLING AND CARAMEL REPLICA MOULDING

Zhiyuan Dong, Bangyong Sun, and Gang Li *Chongqing University*, *CHINA*

T4-446.e 3D CO-CULTURED MULTICELLULAR SPHEROIDS ON MICROFLUIDIC CHIP FOR STUDYING ECM-MEDIATED DRUG RESISTANCE

Venkanagouda S. Goudar¹, Long Sheng Lu², Manohar Prasad Koduri¹, and Fan-Gang Tseng^{1,3}
¹National Tsing Hua University, TAIWAN, ²Taipei Medical University Hospital, TAIWAN, and
³Academia Sinica, TAIWAN

T4-447.e FORMATION OF CONTRACTILE SKELETAL MUSCLE TISSUE WITH TENDON TISSUE AT BOTH ENDS

Yuya Morimoto, Shigenori Miura, and Shoji Takeuchi *University of Tokyo, JAPAN*

T4-448.e REPLICA MOLDING OF THIOL-ENE MICROWELL ARRAYS FOR MICROFLUIDIC 3D CELL SPHEROID CULTURING

Päivi Järvinen¹, Sari Tähkä¹, Ashkan Bonabi¹, Ville Jokinen², and Tiina Sikanen¹ *University of Helsinki, FINLAND and ²Aalto University, FINLAND*

W5-546.e 3D PRINTED DEVICE FOR 96-WELL HYDROSTATIC PRESSURE CONTROL

Adam Szmelter and David Eddington University of Illinois, Chicago, USA

W5-547.e HIGHLY PARALLELIZED HUMAN EMBRYONIC STEM CELL DIFFERENTIATION IN NANOLITER CHAMBERS

Anke R. Vollertsen, Simone A. ten Den, Verena Schwach, Albert van den Berg, Robert Passier, Andries D. van der Meer, and Mathieu Odijk *University of Twente, THE NETHERLANDS*

W5-548.e SEQUESTERING EXTRACELLULAR VESICLE PROFILES IN NEUROFLUIDICS

Zeynep Malkoc, Stephanie E. McCalla, and Anja Kunze *Montana State University, USA*

W6-645.e A DROPLET MICROFLUIDIC PLATFORM FOR GENERATING STEM CELL-DERIVED AND LONG-LASTING HUMAN LIVER MICROTISSUES

Regeant Panday¹, David A. Kukla¹, Alexandra L. Crampton², David K. Wood², and Salman R. Khetani¹ *University of Illinois, Chicago, USA and ²University of Minnesota, USA*

W6-646.e INTEGRATED HEPATOCYTE SPHEROID FORMATION AND ENCAPSULATION FOR SYSTEMATIC STUDY OF EXTRACELLULAR MATRIX EFFECT

Shuai Deng, Yanlun Zhu, Xiaoyu Zhao, and Hon Fai Chan Chinese University of Hong Kong, CHINA

W6-647.e SIMPLE CHEMICAL GRADIENT GENERATION FOR A SPHEROID CULTURE ARRAY

Panhui Yang, Lei Wu, and Hongju Mao Chinese Academy of Sciences, CHINA

Th7-745.e A MICROFLUIDIC ORGANOID TRAPPING DEVICE TO FORM TUBE-LIKE INTESTINAL ORGANOIDS

Miki Matsumoto¹, Yuya Morimoto¹, Toshiro Sato², and Shoji Takeuchi¹ *University of Tokyo, JAPAN and ²Keio University School of Medicine, JAPAN*

Th7-746.e INTERPENETRATING HYDROGEL NETWORK BASED ON 3D-PRINTABLE ENDOTHELIAL CELLS COCULTURED WITH FIBROBLASTS

Soo Jee Kim, Gihyun Lee, and Je-Kyun Park Korea Advanced Institute of Science and Technology (KAIST), KOREA

Th7-747.e SKIN-EQUIVALENT CULTURE DEVICE FOR APPLYING VERTICAL COMPRESSION

Satoshi Inagaki, Keigo Nishimura, Yuya Morimoto, and Shoji Takeuchi *University of Tokyo, JAPAN*

Th8-845.e A SIMPLE METHOD TO ANALYZE NATURAL HYPOXIA EXPRESSION IN JUMBO SPHEROIDS ON-CHIP

Elena Refet-Mollof^{1,2}, Ouafa Najyb², Rodin Chermat^{1,2}, Julie Lafontaine², Philip Wong², and Thomas Gervais^{1,2}

¹Polytechnique Montréal, CANADA and ²Centre Hospitalier de l'Université de Montréal, CANADA

Th8-846.e MODELING CTC CLUSTERS USING 3D-PRINTED AGAROSE MICROWELLS

Qiyue Luan, Jian Zhou, Celine Macaraniag, and Ian Papautsky *University of Illinois, Chicago, USA*

Th8-847.e TIME-LAPSE IMAGING OF MOUSE EMBRYONIC STEM CELLS USING AN AUTOMATED MICROFLUIDIC DEVICE

Adam F. Laing¹, Venkat Tirumala¹, Evan Hegarty¹, Sudip Mondal¹, Peisen Zhao¹, William B. Hamilton², Joshua M. Brickman², and Adela Ben-Yakar¹

¹University of Texas, Austin, USA and ²University of Copenhagen, DENMARK

e - Cells, Organisms and Organs on a Chip

Inter-& Intracellular Signaling, Cell Migration

T3-349.e A CIRCULATING CO-CULTURE MICROFLUIDIC DEVICE FOR THE DYNAMIC SAMPLING OF PARACRINE FACTORS

Emmaline F. Miller¹, Jacy Busboom², Joshua J. Clavin¹, Elizabeth C. Martin¹, and Adam T. Melvin¹ *Louisiana State University, USA and ²University of Wyoming, Laramie, USA*

T4-449.e A MODULAR GRANULOMA MODEL FOR MICROENVIRONMENT SIGNALING STUDIES *IN VITRO*

Maia S. Gower, Samuel B. Berry, Xiaojing Su, Chetan Seshadri, and Ashleigh B. Theberge *University of Washington, USA*

W5-549.e DENDRITIC CELL MIGRATION IN 2D CONFINED ENVIRONMENT

Yongjun Choi^{1,2} and Yoon-Kyoung Cho^{1,2}

¹Ulsan National Institute of Science & Technology (UNIST), KOREA and

²Institute for Basic Science (IBS), KOREA

W6-648.e HIGH THROUGHPUT INTRACELLULAR DELIVERY FACILITATED BY ACOUSTOFLUIDICS

Alinaghi Salari^{1,2}, Sila Appak-Baskoy^{1,2}, Imogen R. Coe², John Abousawan², Costin N. Antonescu², Scott S.H. Tsai^{1,2}, and Michael C. Kolios^{1,2}

¹Institute for Biomedical Engineering, Science and Technology (iBEST), CANADA and

²Ryerson University, CANADA

Th7-748.e MICROFLUIDIC CHAMBER DEVICE TO TEST QUORUM SENSING THEORY

Jia Hwei Cheong, Xiao Qiu, Yang Liu, James Griffith, Heinzr Bernd Schüttler, Jonathan Arnold, and Leidong Mao

University of Georgia, USA

Th8-848.e MULTIPLEXED END-POINT MICROFLUIDIC CHEMOTAXIS ASSAY USING CENTRIFUGAL ALIGNMENT

Pan Deng¹, Sampath Satti¹, Kerryn Matthews¹, Simon P. Duffy^{1,2}, and Hongshen Ma^{1,3}

¹University of British Columbia, CANADA, ²British Columbia Institute of Technology, CANADA, and

³Vancouver General Hospital, CANADA

e - Cells, Organisms and Organs on a Chip

Organisms on Chip (C. elegans, Zebrafish, Arabidopsis, etc.)

M1-150.e AN ULTRA-HIGH-DENSITY MICROFLUIDIC PLATFORM TO IMAGE C. ELEGANS FOR HIGH-CONTENT PHENOTYPIC SCREENS

Sudip Mondal, Evan Hegarty, Chris Martin, Sertan K. Gökçe, and Adela Ben-Yakar *University of Texas, Austin, USA*

M1-151.e MICROFLUIDIC DEVICE TO SCREEN THE ELECTRIC INDUCED BEHAVIORAL RESPONSE OF MULTIPLE ZEBRAFISH LARVAE

Arezoo Khalili, Ellen van Wijngaarden, Khaled Youssef, Georg Zoidl, and Pouya Rezai *York University, CANADA*

M2-249.e CONTROLLABLE MICROFLUIDIC ROTATION OF CAENORHABDITIS ELEGANS

Peng Pan^{1,2}, John D. Laver¹, Zhen Qin¹, Yuxiao Zhou¹, Ran Peng¹, Lijun Zhao³, Hui Xie³,

John A. Calarco¹, and Xinyu Liu¹

¹University of Toronto, CANADA, ²McGill University, CANADA, and

³Harbin Institute of Technology, CANADA

M2-250.e ON-DEMAND DIRECT CURRENT ELECTRIC FIELD IMMOBILIZATION ENABLES HIGH-RESOLUTION IMAGING OF C. ELEGANS

Khaled Youssef¹, Daphne Archonta¹, Terrance J. Kubiseski¹, Anurag Tandon², and Pouya Rezai¹ *York University, CANADA and ²University of Toronto, CANADA*

T3-350.e CONTROLLING THE BODY ORIENTATION OF C. ELEGANS BY EXPLOITING ITS PROPRIOCEPTION IN A MICROFLUIDIC CONFINEMENT FOR BODY WALL MUSCLE IMAGING

Samuel Sofela^{1,2}, Sarah Sahloul¹, Sukanta Bhattacharjee¹, and Yong-Ak Song^{1,2}
¹New York University Abu Dhabi, UAE and ²New York University, USA

T3-351.e ON-DEMAND SAMPLE SELECTION AND BEHAVIORAL SCREENING OF ACTIVE MICROSWIMMERS ENABLED BY AN OPEN-ACCESSIBLE DEVICE

Gongchen Sun, Cassidy-Arielle Manning, Ga Hyun Lee, and Hang Lu Georgia Institute of Technology, USA

T4-450.e EFFECT OF MICROFLUIDIC PROCESSING ON THE VIABILITY OF BOAR AND BULL SPERMATOZOA

Tanja Hamacher¹, Johanna T.W. Berendsen¹, Stella A. Kruit¹, Marleen L.W.J. Broekhuijse^{2,3}, and Loes I. Segerink¹

¹University of Twente, THE NETHERLANDS, ²CRV, THE NETHERLANDS, and

³Topigs Norsvin, THE NETHERLANDS

T4-451.e PARALLEL SCREENING OF SINGLE ZOOSPORE GERMINATION AND GERM TUBE PROTRUSIVE FORCES

Yiling Sun, Ayelen Tayagui, Ashley Garrill, and Volker Nock *University of Canterbury, NEW ZEALAND*

W5-550.e EGG LAYING NEURON MEDIATES ELECTROSENSATION IN CAENORHABDITIS ELEGANS

Khaled Youssef¹, Daphne Archonta¹, Terrance J. Kubiseski¹, Anurag Tandon², and Pouya Rezai¹ *York University, CANADA and ²University of Toronto, CANADA*

W5-551.e STRAIGHTFORWARD MICROFLUIDIC SYSTEM FOR BEHAVIORAL RESPONSES ANALYSIS OF C. ELEGANS TO PHYSICAL CUES

Sunhee Yoon, Tae-Joon Jeon, and Sun Min Kim *Inha University, KOREA*

W6-649.e HABITUATION OF ZEBRAFISH LARVAE TO ELECTRICAL STIMULUS

Arezoo Khalili, Ellen van Wijngaarden, Georg Zoidl, and Pouya Rezai *York University, CANADA*

Th7-749.e ELECTRIC FIELD INDUCED C. ELEGANS EGG LAYING IS NEURON-MEDIATED AND DEPENDENT ON FIELD POLARITY

Khaled Youssef¹, Daphne Archonta¹, Terrance J. Kubiseski¹, Anurag Tandon², and Pouya Rezai¹ *York University, CANADA and ²University of Toronto, CANADA*

Th8-849.e IN-VIVO QUANTIFICATION OF DROSOPHILA LARVA HEART FUNCTIONS

Alireza Zabihihesari, Arthur J. Hilliker, and Pouya Rezai *York University, CANADA*

e - Cells, Organisms and Organs on a Chip

Organs on Chip

M1-152.e A MICROFLUIDIC MODEL OF THE HUMAN PLACENTA

Taisei Amanokura, Takeshi Hori, Norio Kobayashi, Hiroaki Okae, Takahiro Arima, and Hirokazu Kaji *Tohoku University, JAPAN*

M1-153.e FABRICATION AND FLUIDIC INTEGRATION OF SELF-ASSEMBLED CELLULAR MICROTUBULES FOR NEPHRON-ON-CHIP APPLICATIONS

Kevin Tröndle¹, Ahmad Itani¹, Fritz Koch¹, Roland Zengerle^{1,2}, Stefan Zimmermann¹, and Peter Koltay^{1,2}
¹University of Freiburg, GERMANY and 2Hahn-Schickard, GERMANY

M1-154.e LAB-ON-A-CHIP SYSTEM INTEGRATED WITH NANOFIBER MATS FOR BIOCHEMICAL SIMULATION OF HYPOXIA OF CARDIAC CELLS

Anna Kobuszewska, Dominik Kolodziejek, Michal Wojasiński, Tomasz Ciach, Zbigniew Brzózka, and Elżbieta Jastrzębska

Warsaw University of Technology, POLAND

M1-155.e MODELLING SKIN PRO-INFLAMMATORY RESPONSE IN AN ENGINEERED INFECTED EPIDERMIS MODEL

Maryam Jahanshai, Zhina Hadisi, and Mohsen Akbari *University of Victoria, CANADA*

M1-156.e WOUND-ON-A-CHIP DEVICE FOR HUMAN SKIN HEALING ASSAYS

Kamil Talar¹, Holly N. Wilkinson², Alexander Iles¹, Matthew J. Hardman², and Nicole Pamme¹ *University of Hull, UK and ²Hull York Medical School, UK*

M2-251.e A MULTI-CULTURE ARRAY FOR MODELLING NUMEROUS MECHANISMS OF CUTANEOUS DRUG REACTIONS

Lor Huai Chong¹, Terry Ching^{1,2}, Gianluca Grenci³, and Yi-Chin Toh^{1,4}

¹National University of Singapore, SINGAPORE, ²Singapore University of Technology and Design, SINGAPORE, ³Mechanobiology Institute, SINGAPORE, and ⁴Queensland University of Technology, AUSTRALIA

M2-252.e FROM MODEL SYSTEM TO THERAPY – SCALABLE PRODUCTION OF PERFUSABLE VASCULARIZED LIVER SPHEROIDS IN "OPEN-TOP" 384- WELL PLATE

Dawn S.Y. Lin, Shravanthi Rajasekar, Mandeep Kaur Marway, and Boyang Zhang *McMaster University, CANADA*

M2-253.e LOW-COST OPEN MICROFLUIDIC DEVICE FOR VASCULARIZED SPHEROID-ON-A-CHIP

Qinyu Li, Kai Niu, and Xiaolin Wang Shanghai Jiao Tong University, CHINA

M2-254.e MODELLING THE TUMOR MICRO-ENVIRONMENT IN HEPATOCELLULAR CARCINOMA USING MULTI-CELLULAR SPHEROIDS

Ana Ortiz-Perez, Agnieszka Zuchowska, Jean-Baptiste Blondé, Ruchi Bansal, and Séverine Le Gac *University of Twente, THE NETHERLANDS*

T3-352.e A VASCULARIZED MICRO LIVER MODEL SUPPORTS ROBUST ALBUMIN AND CYP450 EXPRESSION BY HUMAN HEPATOCYTES

Satomi Matsumoto, Jennifer S. Fang, Yu-Hsi Chen, Da Zhao, Abraham P. Lee, and Christopher C.W. Hughes *University of California, Irvine, USA*

T3-353.e HEART-LIVER ON A CHIP INTEGRATED WITH A MICROELECTRODE ARRAY TO MONITOR EXTRACELLULAR FIELD POTENTIALS OF CARDIOMYOCYTES

Dongxiao Zhang¹, Yoshikazu Hirai¹, Ken-ichiro Kamei¹, Osamu Tabata^{1,2}, and Toshiyuki Tsuchiya¹ *Kyoto University, JAPAN and* ² *Kyoto University of Advanced Science, JAPAN*

T3-354.e MEASURING BARRIER FUNCTION IN A GUT-ON-CHIP

Elsbeth G.B.M. Bossink, Mariia Zakharova, Mathieu Odijk, and Loes Segerink *University of Twente, THE NETHERLANDS*

T3-355.e ON-CHIP MODELLING OF THE BIOPHYSICS OF PANCREATIC DUCTAL ADENOCARCINOMA FOR ASSESSMENT WITH NEW THERAPEUTICS

Delanyo Kpeglo¹, Margaret Knowles¹, Malcolm Haddrick², Stephen D. Evans¹, and Sally A. Peyman¹ *University of Leeds, UK and ²Medicines Discovery Catapult (MDC), UK*

T4-452.e AN ELASTIC PROTEIN MEMBRANE FOR PERFUSABLE MICROFLUIDIC CELL BARRIER MODELLING IN A POLYDIMETHYLSILOXANE-FREE FLEXIBLE CHIP

Lisa D. Muiznieks, Jessica Ayache, Emma Thomée, and Noémi Thomazo *Elvesys - Microfluidics Innovation Center, FRANCE*

T4-453.e HEMOSTASIS-ON-A-CHIP: EVALUATING THE EFFICACY OF THROMBIN-CONJUGATED IRON OXIDE NANOPARTICLES FOR PLATELET ACTIVATION IN ORGANOTYPIC BLOOD VESSELS

Alexander F. Pessell, Kennedy R. Baugh, Anthony Geraci, Kayle Riley, Max M. Gong, and Melanie G. Watson *Trine University*, *USA*

T4-454.e MECHANICAL STIMULATION INCREASES ECM PRODUCTION BY CHONDROCYTES IN A CARTILAGE-ON-A-CHIP PLATFORM

Carlo Alberto Paggi¹, Jan Hendriks¹, Liliana Moreira Teixeira^{1,2}, Marcel Karperien¹, and Séverine Le Gac¹ *University of Twente, THE NETHERLANDS and ²Utrecht University, THE NETHERLANDS*

T4-455.e ORAL MUCOSA-CHIP AS AN ALTERNATIVE PLATFORM TO EVALUATE THE IMPACTS OF DENTAL MONOMERS

Khanh Ly¹, Seyed Rooholghodos¹, Christopher Rahimi¹, Benjamin Rahimi¹, Diane R. Bienek², Gili Kaufman², Christopher Raub¹, and Xiaolong Luo¹

¹Catholic University of America, USA and ²ADA Science and Research Institute, USA

W5-552.e CANCER METASTASIS RECAPITULATED IN THREE-DIMENSIONAL HUMAN LIVER-CHIP

Jooyoung Ro^{1,2}, Junyoung Kim^{1,2}, Chaeeun Lee^{1,2}, and Yoon-Kyoung Cho^{1,2}
¹Ulsan National Institute of Science & Technology (UNIST), KOREA and
²Institute for Basic Science (IBS), KOREA

W5-553.e MEMS ACTUATION PROMOTES IN VITRO BRAIN-ON-CHIP MATURATION

Alex Bastiaens¹, Gulden Akcay¹, Maaike Fransen¹, Sijia Xie², and Regina Luttge¹
¹Eindhoven University of Technology, THE NETHERLANDS and ²Paul Scherrer Institute, SWITZERLAND

W5-554.e RECONSTITUTING THE ARTERIAL INTIMA-MEDIA INTERFACE USING A DUAL-LANE EXTRACELLULAR MATRIX PATTERNED MICROFLUIDIC 3D CO-CULTURE PLATFORM FOR STUDY OF ATHEROSCLEROSIS

Chengxun Su¹, Nishanth Venugopal Menon¹, Xiaohan Xu¹, Yu Rong Teo¹, Huan Cao¹, Rinkoo Dalan^{1,2}, Chor Yong Tay¹, and Han Wei Hou¹

¹Nanyang Technological University, SINGAPORE and ²Tan Tock Seng Hospital, SINGAPORE

W6-650.e A 3D MICROPATTERNED NEURONAL CULTURE PLATFORM USING EXTRACELLULAR MATRIX-BASED HYDROGEL ON A MICROELECTRODE ARRAY

Dongjo Yoon, Jaejung Son, Je-Kyun Park, and Yoonkey Nam Korea Advanced Institute of Science and Technology (KAIST), KOREA

W6-651.e CONTINUOUS MONITORING OF ISOGENIC BLOOD-BRAIN BARRIER INTEGRITY IN A PDMS-FREE MICROPHYSIOLOGICAL SYSTEM

Thomas E. Winkler¹, Isabelle Matthiesen¹, Dimitrios Voulgaris¹, Polyxeni Nikolakopoulou², and Anna Herland^{1,2}

¹KTH Royal Institute of Technology, SWEDEN and ²Karolinska Institute, SWEDEN

W6-652.e INTEGRATED ANISOTROPIC TUBULAR CARDIAC TISSUE AND CIRCULATING MICROCHANNEL SYSTEM FOR DRUG TESTING

Bo-Heng (Henry) Liu and Fan-Gang Tseng National Tsing Hua University, TAIWAN

W6-653.e WITHDRAWN

W6-654.e SECRETOME ANALYSIS WITH SIMULTANEOUS ON-CHIP ANGIOGENESIS AND ANASTOMOSIS BETWEEN HUMAN ARTERIAL AND VENOUS CELLS

Elisabeth Hirth¹, Claudius Dietsche¹, Todd Duncombe¹, Danilo Ritz², Maria Filippova^{2,3}, and Petra S. Dittrich¹ *ETH Zürich, Basel, SWITZERLAND, ²University of Basel, SWITZERLAND, and* ³ *University Hospital, SWITZERLAND*

Th7-750.e A 3D-PRINTED MODULAR MICROCHIP WITH AN INTEGRATED IMPELLER PUMP TO MODEL INTER-ORGAN COMMUNICATION

Sophie R. Cook and Rebecca R. Pompano *University of Virginia*, *USA*

Th7-751.e DEVELOPMENT OF CLOSED AND PUMPLESS PLATFORM FOR CO-CULTURE IN MINIMALIZED SPACE

Hidetaka Ueno^{1,2}, Yuri Aoki³, Kenji Hanamura³, Mai Yamamura³, Tomoaki Shirao³, and Takaaki Suzuki³

¹National Institute of Advanced Industrial Science and Technology (AIST), JAPAN,

²JSPS Research Fellow, JAPAN, and ³Gunma University, JAPAN

Th7-752.e INTEGRATING PANCREAS TISSUE SLICES WITH ADVANCED ANALYTICAL APPROACHES FOR MEASUREMENT OF INSULIN RELEASE

I-An Wei and Michael G. Roper Florida State University, USA

Th7-753.e MICROFLUIDICS AND IMMUNOTHERAPY: MODELLING SOLID TUMORS

Jose M. Ayuso, Maria Virumbrales-Munoz, Patrick H. McMinn, Shujah Rehman, Cate M. Fitzgerald, Melissa C. Skala, and David J. Beebe *University of Wisconsin, USA*

Th7-754.e SOFT STRETCHABLE BIOLOGICAL MEMBRANES FOR ORGANS-ON-CHIP

Pauline Zamprogno¹, Giuditta Thoma¹, Veronika Cencen², Dario Ferrari¹, Barbara Putz³, Johann Michler³, Georg E. Fantner², and Olivier T. Guenat^{1,4}

¹University of Bern, SWITZERLAND, ²Ecole Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND,

³EMPA Swiss Federal Laboratories for Materials Science and Technology, SWITZERLAND, and ⁴University Hospital of Bern, SWITZERLAND

Th8-850.e A LIVER-IN-CHIP PLATFORM FOR PRESERVING EX VIVO TISSUE VIABILITY

Foivos Chatzidimitriou, Soon Seng Ng, S. Tamir Rashid, Joseph M. Sherwood, and Darryl R. Overby *Imperial College London, UK*

Th8-851.e EFFECT OF SHEAR STRESS ON THE EXPRESSION OF FUNCTIONAL PROTEINS IN A BILAYER PROXIMAL TUBULE-ON-A-CHIP

Ramin Banan Sadeghian¹, Ryohei Ueno¹, Toshikazu Araoka¹, Jun Yamashita¹, Tatsuji Enoki², Minoru Takasato³, and Ryuji Yokokawa¹

¹Kyoto University, JAPAN, ²Takara Bio, Inc., JAPAN, and ³RIKEN, JAPAN

Th8-852.e INVESTIGATING DRUG-INDUCED AUTOPHAGY IN A MICROFLUIDIC MODEL OF GLIOBLASTOMA

Ehsan Samiei¹, Saeid Ghavami², and Mohsen Akbari¹

¹University of Victoria, CANADA and ²University of Manitoba, CANADA

Th8-853.e MICROPILLAR-BASED MICROFLUIDIC SYSTEM FOR STUDIES OF 3D PANCREATIC ISLET STRUCTURES

Patrycja Sokolowska^{1,2}, Anna Grabowska¹, Kamil Żukowski¹, Elzbieta Jastrzebska¹, Zbigniew Brzozka¹, and Agnieszka Dobrzyn²

¹Warsaw University of Technology, POLAND and ²Nencki Institute of Experimental Biology, POLAND

Th8-854.e SYNOVIAL MEMBRANE ON CHIP: A NEW TOOL TO STUDY CO-CULTURE RESPONSE TO MECHANICAL STIMULATION

Carlo Alberto Paggi¹, Mariia Zakharova¹, Loes Segerink¹, Séverine Le Gac¹, Liliana Moreira-Teixeira^{1,2}, and Marcel Karperien¹

¹University of Twente, THE NETHERLANDS and ²Utrecht University, THE NETHERLANDS

e - Cells, Organisms and Organs on a Chip Bioinspired, Biomimetic & Biohybrid Devices

M1-157.e FORMATION OF A NEURON-MUSCLE CONSTRUCT USING NEURAL CELL FIBERS AND

SKELETAL MUSCLE TISSUE FOR BIOHYBRID ACTUATORS

Akihiro Sunagawa¹, Midori Negishi^{1,2}, Minghao Nie¹, Yuya Morimoto¹, and Shoji Takeuchi¹ *University of Tokyo, JAPAN and ²Musashino University, JAPAN*

M2-255.e A NEW PLATFORM FOR CULTURE AND ELECTROPORATION OF 3D CELL CONSTRUCTS BASED ON A POROUS SCAFFOLD

Marie Frénéa-Robin, Julien Marchalot, Laure Franqueville, and Charlotte Rivière *University of Lyon, FRANCE*

M2-256.e RECAPITULATING CYCLIC STRETCH IN MICROVASCULATURE BY FLOW-INDUCED CUES IN HYDROGEL MICROCHANNELS

Walter Varhue, Aditya Rane, Shayn Peirce-Cottler, George Christ, and Nathan S. Swami *University of Virginia, USA*

T3-356.e ACTOMYOSIN-COLLAGEN HYBRID SOFT ACTUATOR

Kenjiro Kohno¹, Shusei Kawara¹, Yuichi Hiratsuka², and Hiroaki Onoe¹

¹Keio University, JAPAN and ²Japan Advanced Institute of Science and Technology (JAIST), JAPAN

T3-357.e THE INFLUENCE OF SHEAR STRESS GENERATED BY OSMOTIC DRIVEN FLOW ON THE ALIGNMENT OF ENDOTHELIIAL CELL

Zong-Han Sie¹, Lu-Wei Wu¹, Yen-Yu Chang¹, Yi-Chin Toh², and Ya-Yu Chiang¹

¹National Chung-Hsing University, TAIWAN and ²Queensland University of Technology, AUSTRALIA

T4-456.e ANTI-BIOFOULING SURFACES FEATURED WITH MAGNETIC ARTIFICIAL CILIA

Shuaizhong Zhang¹, Pan Zuo¹, Ye Wang¹, Patrick R. Onck², and Jaap M.J. den Toonder¹ *Eindhoven University of Technology, THE NETHERLANDS and* ² *University of Groningen, THE NETHERLANDS*

W5-555.e ZINC OXIDE NANOPILLARS INHIBIT BACTERIAL ATTACHMENT

Nicholas Lin, Amin Valiei, Nathalie Tufenkji, and Christopher Moraes *McGill University*, *CANADA*

W6-655.e CELL-BASED SENSOR INTEGRATED IN OPTICAL FIBER TOWARD MONITORING OF **NEUROTRANSMITTERS**

Hisashi Shimizu¹, Yuichi Morohashi², Yoko Yazaki-Sugiyama^{1,2}, and Shoji Takeuchi¹ 1 University of Tokyo, JAPAN and 2 Okinawa Institute of Science and Technology Graduate University, JAPAN

CROSSLINKING AEROSOL-BASED MULTI-BIOINK PRINTING SYSTEM TO CONSTRUCT Th7-755.e HETEROGENEOUS AND MULTILAYERED HYDROGELS

Gihyun Lee, Soo Jee Kim, and Je-Kyun Park

Korea Advanced Institute of Science and Technology (KAIST), KOREA

Th8-855.e EXOSKELETAL BIOHYBRID ROBOT USING ANTAGONISTIC XENOPUS MUSCLE

Jinhwa Lee¹, Yuya Morimoto¹, Masahiro Shimizu², and Shoji Takeuchi¹ ¹University of Tokyo, JAPAN and ²Osaka University, JAPAN

e - Cells, Organisms and Organs on a Chip

Synthetic Biology

CELL-FREE LOW-COST DE NOVO BACTERIOPHAGE GENOME SYNTHESIS FROM T4-457.e SEOUENCE-VERIFIED MICROARRAY-SYNTHESIZED DNA OLIGONUCLEOTIDES

Huiran Yeom^{1v}, Taehoon Ryu², Namphil Kim¹, and Sunghoon Kwon¹ ¹Seoul National University, KOREA and ²Celemics, Inc, KOREA

W5-556.e DNA NANOBALL RETRIEVAL MICROCHIP DESIGN FOR HIGH-THROUGHPUT ERROR-FREE DNA PURIFICATION PLATFORM

Namphil Kim, Huiran Yeom, Yonghee Lee, and Sunghoon Kwon Seoul National University, KOREA

W6-656.e DROPLET MICROFLUIDIC MICROCOLONY SORTING BY FLUORESCENCE AREA FOR HIGH THROUGHPUT, YIELD-BASED SCREENING OF TRIACYL GLYCERIDES IN S. CEREVISIAE

Sara M. Björk, Martin Schappert, and Haakan N. Joensson KTH Royal Institute of Technology, SWEDEN

Th7-756.e INTRACELLULAR SENSING OF EXPRESSED FACTORS BY REDOX AMPLIFICATION USING BIO-CAPACITOR ON NANOPOROUS GOLD

Yi Liu, John H. Moore, and Nathan S. Swami University of Virginia, USA

RT-OGENE: A REAL-TIME OPTOGENETICS SYSTEM FOR CONTROLLING GENE Th8-856.e EXPRESSION USING MODEL-BASED DESIGN

James M. Perry, Guy Soffer, and Steve C.C. Shih

Concordia University, CANADA

e - Cells, Organisms and Organs on a Chip

Liposomes/Membranes

M1-158.e AN APROTIC POLAR SOLVENT ASSISTED SIZE-TUNING METHOD FOR MICROFLUIDIC PRODUCTION OF LIPID-BASED DRUG NANOCARRIERS WITH VARIOUS SIZES

Niko Kimura, Masatoshi Maeki, Akihiko Ishida, Hirofumi Tani, and Manabu Tokeshi

Hokkaido University, JAPAN

M2-257.e MICROFLUIDIC FORMATION OF LIPID-OUT ASYMMETRIC DROPLET INTERFACE BILAYERS FOR ON-CHIP PHARMACOKINETICS MODELLING

Elanna B. Stephenson and Katherine S. Elvira

University of Victoria, CANADA

T3-358.e PLASMONIC STRUCTURES FOR CLINICAL-SCALE EXOSOME ANALYSIS

Felix Kurth, Luc Driencourt, Fabian Lütolf, Rolando Ferrini, and Silvia Generelli *CSEM*, *SWITZERLAND*

T4-458.e THE BOTTOM-UP SYNTHESIS OF BESPOKE PROTOTISSUES USING A MICROFLUIDIC PLATFORM

Kaitlyn E. Ramsay¹, Jae F. Levy¹, Pierangelo Gobbo², and Katherine Elvira¹ *University of Victoria, CANADA and 2University of Bristol, UK*

e - Cells, Organisms and Organs on a Chip

Other Applications in Biology

W5-557.e AN ACOUSTIC-ELECTRICAL SHEAR OPENING PORATION (AESOP) PLATFORM FOR INTRACELLULAR DELIVERY

Yu-Hsi Chen, Mohammad Aghaamoo, and Abraham P. Lee *University of California, Irvine, USA*

W6-657.e DEVELOPMENT OF NOVEL SCREENING PLATFORM AND ORGANOID CULTURE MODEL FOR OUANTIFIABLE HIGH THROUGHPUT SCREENING OF TUMOR ORGANOID

Yong Hun Jung¹, Donghee Choi¹, Kyungwon Park¹, Satbyol Lee³, Hyunwoo Chung¹, Jihun Yang¹, Jinah Kim¹, Byungsoh Min³, and Seok Chung^{1,2}

¹Korea University, KOREA, ²Korea Institute of Science and Technology (KIST), KOREA, and ³Yonsei University College of Medicine, KOREA

Th7-757.e MICROFLUIDIC INTRACELLULAR DELIVERY VIA FLUID CELL SHEARING

GeoumYoung Kang, Chan Kwon, and Aram Chung Korea University, KOREA

Th8-857.e ORGANOSILICON INTERACTION WITH BIOLOGICAL MEMBRANES

Pepijn Beekman¹, Agustin Enciso-Martinez¹, Sidharam Pujari², Han Zuilhof², Leon Terstappen¹, Cees Otto¹, and Séverine Le Gac¹

¹University of Twente, THE NETHERLANDS and ²Wageningen University, THE NETHERLANDS

e - Cells, Organisms and Organs on a Chip

Industrial Benefactor

W6-658.e CUSTOMIZABLE MICROFLUIDIC DEVICES FOR CO-CULTURE AND ALI RECREATION: BE-DOUBLEFLOW & BE-TRANSFLOW

Sandra González Lana^{1,2}, Lara Pancorbo Lambán¹, Sara Aldea Martín¹, Luis E. Serrano Ramón¹, and Rosa M. Monge Prieto¹

¹BEOnChip S.L., SPAIN and ²University of Zaragoza, SPAIN

Th8-879.e NOURISHING, MONITORING AND STIMULATING CELLS WITH BI/OND'S ORGAN-ON-CHIP DEVICE

Amr Othman¹, Lucie Decourt¹, William. F. Quiros-Solano¹, Dik C. van Gent², Sanjiban Chakrabarty³, Cinzia Silvestri¹, and Nikolas Gaio¹

¹BIOND Solutions B.V., THE NETHERLANDS, ²Erasmus Medical Centre, THE NETHERLANDS, and ³Manipal Academy of Higher Education, INDIA

M1-182.e A USER-FRIENDLY MICROFLUIDICS PLATFORM FOR HIGH-CONTENT IMAGING OF SMALL MODEL ORGANISMS FOR ASSESSMENT OF CHEMICAL TOXICITY

Evan M. Hegarty, Adam F. Laing, Adela Ben-Yakar *Newormics LLC*, *USA*

T4-483.e RESEALABLE, RECIRCULATING PLATFORM FOR THE MECHANICAL STIMULATION OF CELL CO-CULTURES IN A TRANSWELL INSERT

Sandro Meucci¹, Jasper ten Napel¹, Bianka Fabinyi¹, Astrid D. Bakker², Lasse Jensen³, and Anna Fahlgren⁴ *Micronit Microtechnologies BV, THE NETHERLANDS,* ²*Academisch Centrum Tandheelkunde Amsterdam (ACTA), THE NETHERLANDS,* ³*BioReperia, SWEDEN, and* ⁴*Linköping University, SWEDEN*

e - Cells, Organisms and Organs on a Chip

Late News

M1-180.e REAL-TIME OPTICAL MONITORING OF CELL CULTURE IN CENTRIFUGAL MICROFLUIDICS

Edwin En-Te Hwu¹, Lina Gruzinskyte^{1,3}, Atsushi Ishimoto^{1,2}, Laura Serioli¹, Sriram Thoppe Rajendran¹, Akinobu Yamaguchi², Kinga Zór¹, and Anja Boisen¹

¹Technical University of Denmark, DENMARK, ²University of Hyogo, JAPAN, and

³University of Copenhagen, DENMARK

M2-278.e A MICROFLUIDIC CHIP FOR MEASURING WHITE BLOOD CELL CONCENTRATION FROM AN UNDILUTED, WHOLE BLOOD

Georgia Korompili¹, Katerina Skorda¹, and Nikos Chronis^{1,2}

¹National Centre of Scientific Research (NCSR) Demokritos, GREECE and ²University of Crete, GREECE

M2-279.e A MICROFLUIDIC SYSTEM FOR INVESTIGATING THE TRANSIT DYNAMICS OF LIVE AND HEAT-KILLED E. COLI BACTERIA IN C. ELEGANS

Vittorio Viri, Thomas Lehnert, and Martin A.M. Gijs

École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

T3-379.e 3D VASCULAR NETWORKS CO-CULTURED WITH VARIOUS TYPES OF COLORECTAL CANCER CELLS FOR VALIDATION OF NATURAL KILLER CELL CYTOTOXICITY

Hyeri Choi, Jiyoung Song, Dohyun Park, and Noo Li Jeon Seoul National University, KOREA

T3-380.e HIGH-RESOLUTION AND MASSIVE TRAPPING AND SEPARATION OF BACTERIA AND NANOPARTICLES IN AN OPTOFLUIDIC CHIP

Yuzhi Shi, Yi Zhang, Yang Liu, Shilun Feng, Wee Ser, Peng Huat Yap, and Ai Qun Liu *Nanyang Technological University, SINGAPORE*

T4-479.e EVALUATION OF PLURIPOTENCY IN HUMNAN INTENSTINAL CELLS BY MICROFLUIDIC-BASED SINGLE CELL DEFORMABILITY ANALYSIS

Miyu Terada¹, Sachiko Ide¹, Toyohiro Naito¹, Michiya Matsusaki², and Noritada Kaji¹ Kyushu University, JAPAN and ²Osaka University, JAPAN

T4-480.e MICROFLUIDIC COLLAGEN PATTERNING FOR TENDON REGENERATION

Francesca Giacomini, David B. Barata, Hoon Suk Rho, Zeinab Tahmasebi Birgani, Stefan Giselbrecht, Roman Truckenmüller, and Pamela Habibović *Maastricht University, NETHERLANDS*

W5-578.e HIGHLY PARALLEL SINGLE-CELL SIMULTANEOUS TRANSCRIPTOME AND PROTEIN ANALYSIS

Xing Xu, Mingxia Zhang, Xuebing Zhang, Zhi Zhu, and Chaoyong Yang Xiamen University, CHINA

W5-579.e MICROPHYSIOLOGICAL MODEL OF ENDOTHELIUM-FIBROBLAST INTERFACE FOR INVESTIGATING WOUND HEALING

Halston E. Deal^{1,2}, Ashlyn T. Young^{1,2}, Ashley C. Brown^{1,2}, and Michael A. Daniele^{1,2}

¹North Carolina State University, USA and ²University of North Carolina, Chapel Hill, USA

W6-679.e DNA HYDROGELS AS A SCAFFOLD FOR ORGANS-ON-CHIPS: STUDY OF BUOYANCY AND SEDIMENTATION OF MICROBEADS IN DNA GELS

Emilie Belot^{1,2}, Yannick Tauran^{1,2}, Yusuke Sato³, Masahiro Takinoue⁴, Arnaud Brioude¹, Teruo Fujii², and Anthony J. Genot²

¹Université de Lyon, FRANCE, ²University of Tokyo, FRANCE, ³Tohoku University, JAPAN, and ⁴Tokyo Institute of Technology, JAPAN

W6-680.e RECONSTRUCTION OF 3D HUMAN LYMPHATIC VESSEL WITHIN TUMOR IMMUNE MICROENVIRONMENT USING HIGH-THROUGHPUT PLATFORM

Habin Kang¹, Somin Lee¹, Dohyun Park¹, James Yu¹, Seung Kwon Koh², Duck Cho², Da-Hyun Kim¹, Kyung-Sun Kang¹, and Noo Li Jeon¹

¹Seoul National University, KOREA and ²Sungkyunkwan University, KOREA

Th7-778.e A HYDROGEL CO-CULTURE PLATFORM REVEALS COMMUNITY RESPONSES OF BACTERIA TO ALGAL HOST AND NUTRIENTS UNDER A DIFFUSION-CONTROLLED ENVIRONMENT

Hyungseok Kim¹, Jeffrey A. Kimbrel², Jessica Wollard², Xavier Mayali², and Cullen R. Buie¹ Massachusetts Institute of Technology, USA and ²Lawrence Livermore National Laboratory, USA

Th7-779.e TOWARDS HYBRID BIOPRINTING AIDED LIVER ON CHIP

Muhammad Asim Faridi, Zofia Korczak, Philip Dalsbecker, and Caroline B. Adiels *Gothenburg University*, *SWEDEN*

Th8-876.e MICROGROOVE GUIDED 2D CELL CULTURE APPLIED TO CONSTRUCT 3D SEMI-SPHERICAL HEART PUMPING SYSTEM

Bo-Heng (Henry) Liu, Guan-You Shih, and Fan-Gang Tseng National Tsing Hua University, TAIWAN

Th8-877.e THERMAL MORPHOGENESIS IN TISSUE-LIKE ARRAYS OF DROPLETS

Nicolas Lobato-Dauzier¹, Robin Deteix¹, Shu Okumura¹, Alexandre Baccouche¹, Guillaume Gines², Yannick Rondelez², Teruo Fujii¹, and Anthony J. Genot¹

¹University of Tokyo, JAPAN and ²PSL Research University, FRANCE

f - Diagnostics, Drug Testing & Personalized Medicine

Liquid Biopsy and Sample Preparation

M1-159.f ISOLATION OF ALZHEIMER'S DISEASE ASSOCIATED EXOSOMES USING GRAPHENE OXIDE-BASED MICROFLUIDIC CHIP WITH PREFIBRILLAR AMYLOID β (AβΕxοChip)

Yoon-Tae Kang, Ji-Young Kim, Thomas Hadlock, Andrew Rellinger, Nicholas Kotov, and Sunitha Nagrath *University of Michigan, Ann Arbor, USA*

M2-258.f CHARACTERIZATION OF EXTRACELLULAR VESICLES PURIFIED BY ULTRACENTRIFUGATION, SIZE-EXCLUSION CHROMATOGRAPHY AND LAB-ON-A-DISC FILTRATION

Lucile Alexandre^{1,2}, Philippe DeCorwin-Martin¹, Rosalie Martel¹, Molly Shen¹, Johan Renault¹, Lorenna Oliveira¹, Andy Ng¹, and David Juncker¹

¹McGill University, CANADA and ²Institut Curie, FRANCEe

M2-259.f MOLECULAR AND FUNCTIONAL EXTRACELLULAR VESICLE ANALYSIS USING NANOPATTERNED MICROCHIPS MONITORS TUMOR PROGRESSION AND METASTASIS

Peng Zhang^{1,2}, Chaoyong Yang², and Yong Zeng¹

¹University of Kansas, USA and ²Shanghai Jiaotong University School of Medicine, CHINA

T3-359.f DETERMINISTIC LATERAL DISPLACEMENT FOR THE SORTING OF EXTRACELLULAR VESICLES FROM COMPLEX BIOLOGICAL SAMPLES

Marie Gaillard¹, Nicolas Sarrut-Rio¹, Léopold Virot¹, François Boizot¹, Nicolas Verplanck¹, Camille Raillon¹, Vincent Agache^{1,2}, Yoann Roupioz¹, and Aurélie Thuaire¹

¹University Grenoble Alpes, FRANCE and ²Massachusetts Institute of Technology, USA

T3-360.f PRECISELY METERED DRIED BLOOD SPOTS BY USING TUNABLE HYDROPHOBIC BURST VALVES

Lorenz Van Hileghem, Dries Vloemans, Francesco Dal Dosso, and Jeroen Lammertyn *KU Leuven, BELGIUM*

T4-459.f EFFICIENT HUMAN PLASMA EXTRACTION FROM UNDILUTED WHOLE BLOOD BY CELL-FREE LAYER MARGINATION WITH CLOSED-LOOP SINGLE MICROFLUIDIC CHANNEL DEVICE

Lap Man Lee, Ketan H. Bhatt, Dustin W. Haithcock, Mary A. Arugula, Balabhaskar Prabhakarpandian, and Kapil Pant

CFD Research Corporation, USA

T4-460.f TEM GRID PREPARATION WITH MINIMAL USER INTERACTION

Janosch Hauser¹, Gustaf Kylberg², Göran Stemme¹, Ida-Maria Sintorn², and Niclas Roxhed¹ *KTH Royal Institute of Technology, SWEDEN and ²Vironova AB, SWEDEN*

W5-558.f EXOSOME ISOLATION VIA CLICK CHEMISTRY (EXOCLICK) CHIP FOR SCREENING AND QUANTIFICATION OF CANCER-ASSOCIATED EXOSOMES

Yoon-Tae Kang, Thomas Hadlock, Shruti Jolly, and Sunitha Nagrath *University of Michigan, Ann Arbor, USA*

W6-659.f EXTRACELLULAR VESICLE DETECTION DIRECTLY IN COMPLEX MATRICES BY USING FO-SPR SENSOR

Yagmur Yildizhan¹, Venkata Suresh Vajrala¹, Charles Declerck¹, Edward Geeurickx², Sam Noppen¹, Dominique Schols¹, Johannes V. Swinnen¹, Sven Eyckerman², An Hendrix², Jeroen Lammertyn¹, and Dragana Spasic¹

¹KU Leuven, BELGIUM and ²Gent University, BELGIUM

Th7-758.f HARVESTING BIOMOLECULES FROM TISSUE BY POROUS SILICON NANONEEDLES

Davide A. Martella and Ciro Chiappini *King's College London*, *UK*

Th8-858.f INKJET-PRINTED 3D NANO-ENGINEERED MICROCHIPS FOR FUNCTIONAL ANALYSIS OF METASTATIC EXOSOMES

Yong Zeng¹, Peng Zhang², and Liang Xu²
¹University of Florida, USA and ²University of Kansas, USA

f - Diagnostics, Drug Testing & Personalized Medicine

Nucleic-Acid Analysis

M1-160.f EVALUATION OF DLP 3D PRINTING MATERIALS FOR THE MANUFACTURE OF RECOMBINASE POLYMERASE AMPLIFICATION (RPA) MICROREACTORS

Ole Behrmann^{1,2}, Matthias Hügle^{1,2}, Franz Eckardt¹, Iris Bachmann¹, Frank T. Hufert¹, and Gregory Dame¹ *Brandenburg Medical School Theodor Fontane, GERMANY and ²University of Freiburg, GERMANY*

M2-260,f METAL OXIDE NANOWIRES MICROFLUIDIC DEVICES FOR DNA METHYLATION MAPPING

Marina Musa¹, Takao Yasui^{1,2}, Taisuke Shimada¹, Akihide Arima¹, and Yoshinobu Baba^{1,3}
¹Nagoya University, JAPAN, ²Japan Science and Technology Agency (JST), JAPAN, and
³National Institutes for Quantum and Radiological Science and Technology, JAPAN

T3-361.f MICRORNA DETECTION USING STRAND DISPLACEMENT AMPLIFICATION IN HYDROGEL PARTICLES

Nidhi Juthani and Patrick S. Doyle Massachusetts Institute of Technology, USA

T4-461.f NAKED-EYE DETECTION OF POLYMERASE CHAIN REACTION ON MICROFLUIDICS

Ren Shen¹, Yanwei Jia¹, Pui-In Mak¹, and Rui P. Martins^{1,2}

¹University of Macau, CHINA and ²Universidade de Lisboa, PORTUGAL

W5-559.f AUTOMATION OF THE PAPER-BASED VERTICAL FLOW PLATFORM FOR RADIATION BIODOSIMETRY DURING DEEP SPACE MISSION

Jasmine P. Devadhasan, Paul Kuehl, Jerome Lacombe, Jana Stoudemire, Twyman Clements, Jian Gu, and Frederic Zenhausern

University of Arizona, College of Medicine, USA

W5-560.f OE-PCR IN DROPLETS FOR RAPID CONVERSION OF ANTIBODY LIBRARIES

Micaela Vitor¹, Lucas Pereira², Guillaume Mottet¹, Emmanuelle Vigne¹, and Melody Shahsavarian¹ Sanofi, FRANCE and ²L'École Supérieure de Physique et de Chimie Industrielles (ESPCI)FRANCE

W6-660.f CENTRIFUGAL MICROFLUIDIC 4-PLEX DIGITAL DROPLET PCR FOR QUANTIFICATION OF CIRCULATING TUMOR DNA

Franziska Schlenker¹, Elena Kipf¹, Nadine Borst^{1,2}, Tobias Hutzenlaub^{1,2}, Nils Paust^{1,2}, Roland Zengerle^{1,2}, Felix von Stetten^{1,2}, and Peter Juelg¹

¹Hahn-Schickard, GERMANY and ²University of Freiburg, GERMANY

W6-661.f REAGENT INTEGRATION IN DISPOSABLE THERMOPLASTIC 2D MICROWELL ARRAYS USING A CUSTOM SPOTTING PIN

Supriya Padmanabhan, Micaela Everitt, Michael Yeh, Ian White, and Don L. DeVoe *University of Maryland, College Park, USA*

Th7-759.f COMPLEX NUCLEIC ACID HYBRIDIZATION REACTIONS INSIDE CAPILLARY-DRIVEN MICROFLUIDIC CHIPS

Marie L. Salva^{1,2}, Marco Rocca^{1,2}, Yong Hu¹, Emmanuel Delamarche², and Christof M. Niemeyer¹ *Karlsruhe Institute of Technology, GERMANY and ²IBM Research Europe, SWITZERLAND*

Th7-760.f UNRAVELLING THE REACTION MECHANISM AND KINETICS OF DNAZYMES BASED ON BULK AND SINGLE MOLECULE STUDIES

Aida Montserrat Pagès¹, Phebe De Keyser¹, Victor Top¹, Rebecca Andrews², Maarten Hertog¹, Achillefs N. Kapanidis², Dragana Spasic¹, and Jeroen Lammertyn¹

¹KU Leuven, BELGIUM and ²Oxford University, UK

Th8-859.f DIGITAL AND MULTIPLEX MICRO RNA DETECTION WITH MICROCOMPARTMENTALIZED BEAD ASSAY

Thomas Jet¹, Guillaume Gines², Alexis Moravic², Yannick Rondelez², and Valérie Taly¹ *Université de Paris, FRANCE and ²ESPCI Paris, FRANCE*

Protein Analysis & Proteomics

M1-161.f AUTOMATING NANODROPLET SAMPLE PREPARATION WITH LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY FOR HIGH THROUGHPUT SINGLE-CELL PROTEOMICS

Ying Zhu

Pacific Northwest National Laboratory, USA

M1-162.f TIME-RESOLVED MICROFLUIDIC SAMPLE PREPARATION FOR CRYO-EM STRUCTURAL ANALYSIS OF BIOMOLECULAR ASSEMBLIES

Byungjin Lee¹, Märt-Erik Mäeots², Dong-Ho Kim¹, Kyung Han Kim¹, Sung Sik Lee³, Radoslav E. Ivanov², Matthias Peter³, and Chang-Soo Lee¹

¹Chungnam National University, KOREA, ²ETH Zürich, SWITZERLAND, and ³Francis Crick Institute, UK

M2-261.f BIOASSAY ARCHITECTURE COMBINING A QUANTITATIVE G6PDH ASSAY AND A MEASUREMENT OF HEMOGLOBIN CONCENTRATION ON A SINGLE CAPILLARY-DRIVEN MICROFLUIDIC CHIP

Marco Rocca^{1,2}, Yuksel Temiz¹, Marie L. Salva^{1,2}, Samuel Castonguay³, Thomas Gervais³,

Christof M. Niemeyer², and Emmanuel Delamarche¹

¹IBM Research Europe, SWITZERLAND, ²Karlsruhe Institute of Technology (KIT), GERMANY, and ³École Polytechnique de Montréal (EPM), CANADA

T3-362.f DETECTION OF MULTIPLE SEPSIS BIOMARKERS USING A MICROFLUIDIC FLOW CYTOMETER

Xilong Yuan¹, Todd Darcie¹, Srishti Garg¹, James Dou², Lu Chen², and J. Stewart Aitchison¹ *University of Toronto, CANADA and ²Thinkari Research Inc., CANADA*

T4-462.f DROPLET MICROFLUIDICS BASED ENZYMATIC DIGESTION: A NEW SAMPLE PREPARATION TOOL FOR MALDI-TOF MS

Mathilde Richerd¹, Sarah Bregant², Florent Malloggi², and Stéphanie Descroix¹ *Institut Curie, FRANCE and ²Université Paris-Saclay, FRANCE*

W5-561.f ELISA UTILIZING THIN-LAYERED CHANNEL FOR PERFECT CAPTURE AND ACCUMULATION OF TARGET MOLECULE

Ryoichi Ohta¹, Keisuke Sekiya¹, Smirnova Aderina¹, Emi Mori¹, and Takehiko Kitamori^{1,2}
¹University of Tokyo, JAPAN and ²National Tsing Hua University, TAIWAN

W6-662.f PICO-LITER PROTEIN DIGESTION AND SEPARATION USING NANOFLUIDIC DEVICE

Kyojiro Morikawa¹, Koki Yamamoto¹, Hiroki Sano¹, Yutaka Kazoe², Hisashi Shimizu¹, Hiroyuki Imanaka³, Koreyoshi Imamura³, and Takehiko Kitamori^{1,4}

¹University of Tokyo, JAPAN, ²Keio University, JAPAN, ³Okayama University, JAPAN, and ⁴National Tsing Hua University, TAIWAN

Th7-761.f IN SITU NMR LAB-ON-A-CHIP SYSTEM FOR STUDYING PROTEIN-LIGAND INTERACTIONS

Marek Plata, William Hale, Manvendra Sharma, Jörn M. Werner, and Marcel Utz *University of Southampton, UK*

Th8-860.f AUTOMATED CHIP-BASED THIN-LAYERED ELISA

Adelina Smirnova¹, Ryoichi Ohta¹, and Takehiko Kitamori²

¹University of Tokyo, JAPAN and ²National Tsing Hua University, TAIWAN

Th8-861.f LOCALIZED MULTIPLEXED SURFACE FUNCTIONALIZATION OF THERMOPLASTIC MICROCHANNELS TOWARDS THE ENRICHMENT AND PROTEIN CARGO ANALYSIS OF EXTRACELLULAR VESICLES

André Kling, Yannick R.F. Schmid, Jonas Nikoloff, and Petra S. Dittrich ETH Zürich, SWITZERLAND

Cancer Research, Capture & Analysis of Circulating Tumor Cells

M1-163.f PATIENT-DERIVED KIDNEY CANCER MODELS ON-A-CHIP TO INFORM PRECISION ONCOLOGY

Maria Virumbrales-Muñoz, Jiong Chen, Jose Ayuso, E. Jason Abel, and David J. Beebe *University of Wisconsin, Madison, USA*

M2-262.f A BIO-MICROCHIP FUNCTIONALIZED BY SELF-ASSEMBLED AUNPS FOR EFFICIENT CAPTURE AND RELEASE OF CIRCULATING TUMOR CELLS

Yixing Gou^{1,2}, Zheng You², Changku Sun¹, and Dahai Ren¹
¹Tianjin University, CHINA and ²Tsinghua University, CHINA

M2-263.f QUANTIFICATION OF PROTEIN EXPRESSION LOCALLY ON FROZEN TISSUE SECTIONS TO EVALUATE TUMOR HETEROGENEITY

Anna Fomitcheva Khartchenko^{1,2}, Peter Schraml³, and Govind V. Kaigala² ¹ETH Zürich, SWITZERLAND, ²IBM Research – Europe, SWITZERLAND, and ³University Hospital Zurich, SWITZERLAND

T3-363.f ACOUSTIC MICROSTREAMING CAPTURE OF CIRCULATING TUMOR CELLS AND CIRCULATING CANCER ASSOCIATED FIBROBLASTS AND FUNCTIONAL IMMUNE ASSESSMENT FROM BREAST CANCER PATIENTS

Ruoyu Jiang, Sudhanshu Agrawal, Ritesh Parajuli, Anshu Agrawal, and Abraham P. Lee *University of California, Irvine, USA*

T3-364.f SACA CHIP ENABLED CIRCULATING TUMOR CELL CLUSTERS PHENOTYPING FOR CANCER IMMUNOTHERAPY RESPONSE MONITORING

Chun-Jieh Hsu¹, Yu-Chia Kan², Chun-Wei Lee¹, Jen-Kuei Wu^{1,2}, Kang-Yun Lee³, Po-Hao Feng³, Wei-Chiao Chang³, and Fan-Gang Tseng^{1,2}

¹National Tsing Hua University, TAIWAN, ²Academia Sinica, TAIWAN, and

³Taipei Medical University, TAIWAN

T4-463.f CREATING AN *IN VITRO* LUNG MICROENVIRONMENT VIA DNA-DIRECTED PATTERNING TO INVESTIGATE THE ROLE OF EXTRACELLULAR VESICLES IN METASTASIS

Sean E. Kitayama and Lydia L. Sohn *University of California, Berkeley, USA*

T4-464.f TUMOR-AGNOSTIC MICROFLUIDIC ISOLATION OF CIRCULATING TUMOR CELLS FROM LEUKAPHERESIS PRODUCTS

Avanish Mishra^{1,2}, Taronish D. Dubash^{1,2}, Jon F. Edd¹, Michelle Jewett¹, Suhaas G. Garre¹, Nezihi Murat Karabacak^{1,3}, Daniel C. Rabe^{1,2}, Baris R. Mutlu^{1,2}, John R. Walsh¹, Ravi Kapur⁴, Shannon L. Stott^{1,2}, Shyamala Maheswaran^{1,2}, Daniel A. Haber^{1,2,5}, and Mehmet Toner^{1,2,3}

¹Massachusetts General Hospital, USA, ²Harvard Medical School, USA, ³Shriners Hospitals for Children, USA, ⁴MicroMedicine, Inc., USA, ⁵Howard Hughes Medical Institute, USA

W5-562.f HIERARCHICAL HERRINGBONE MICROWELLS FOR HIGH-THROUGHPUT SINGLE CELL ENTRAPMENT

Ayoub Glia^{1,2}, Pavithra Sukumar¹, Muhammedin Deliorman¹, and Mohammad A. Qasaimeh^{1,2}
¹New York University Abu Dhabi, UAE and ²New York University, USA

W5-563.f WHOLE GENOME SEQUENCING OF SINGLE CIRCULATING TUMOR CELLS AFTER THEIR SIZE-BASED ENRICHMENT

Wooseok Lee, Amos Chungwon Lee, Yongju Lee, Ahyoun Choi, Sudeok Kim, and Sunghoon Kwon Seoul National University, KOREA

W6-663.f MICRODISSECTED TUMOR TISSUE HAS LOWER HYPOXIA, APOPTOSIS, AND NECROSIS, AND HIGHER PROLIFERATION THAN TUMOR SLICES CULTURED UNDER SIMILAR CONDITIONS

Dina Dorrigiv^{1,3}, Kayla Simeone^{1,2}, Benjamin Péant^{1,2}, Euridice Carmona¹, Jennifer K. Dupont¹, Anne-Marie Mes-Masson^{1,2}, and Thomas Gervais^{1,3}

¹Centre Hospitalier de l'Université de Montréal, CANADA, ²Université de Montréal, CANADA, and ³Polytechnique Montréal, CANADA

Th7-762.f MICROFLUIDIC MODELS FOR NATURAL KILLER/CANCER CELL INTERACTIONS IN METASTASIS

Heather E. Bomberger, Behiye Kodal, Martin Felices, and David K. Wood *University of Minnesota*, USA

Th8-862.f PARALLELIZED MICROFLUIDIC THIN CELL TRAPPERS FOR EFFECTIVELY SELECTING BLOOD CIRCULATING TUMOR CELLS

Natsumi Shimmyo, Makoto Furuhata, Masumi Yamada, Rie Utoh, and Minoru Seki Chiba University, JAPAN

f - Diagnostics, Drug Testing & Personalized Medicine

Neurobiology/Neuroscience

W6-664.f SPATIALLY RESOLVED MICROFLUIDICS FOR STIMULATING LOCAL ISCHEMIA IN BRAIN TISSUE

Michael T. Cryan, Yuxin Li, and Ashley E. Ross *University of Cincinnati, USA*

Th7-763.f WIRELESS BIORESORBABLE NERVE STIMULATORS WITH SOFT CUFF ELECTRODE

Kyung Su Kim, Seunghun Han, and Jahyun Koo Korea University, KOREA

f - Diagnostics, Drug Testing & Personalized Medicine Clinical Chemistry

M1-164.f POINT-OF-CARE DETECTION OF CIRCULATING HISTONES FOR INTERNAL TRAUMA DIAGNOSIS

Micaela L. Everitt and Ian M. White University of Maryland, College Park, USA

Th8-863.f FINGER-DRIVEN PUMP ASSISTED MICROFLUIDIC PLATFORM FOR COLORIMETRIC DETECTION OF LITHIUM

Angelo Traina¹, Han Gardeniers², and Burcu Gumuscu^{2,3}

¹University of Roma "La Sapienza", ITALY, ²University of Twente, THE NETHERLANDS, and

³Eindhoven University of Technology, THE NETHERLANDS

Personalized Medicine

M1-165.f POINT-OF-CARE SOLUTION FOR THERAPEUTIC DRUG MONITORING ENABLED BY INTEGRATING FO-SPR READOUT INTO A SELF-POWERED MICROFLUIDIC PLATFORM

Henry Ordutowski, Jiahuan Qu, Ruben Verbruggen, Francesco Dal Dosso, Saba Safdar, Nick Geukens, Debby Thomas, Dragana Spasic, and Jeroen Lammertyn

KU Leuven, BELGIUM

M2-264.f A MICROFLUIDIC 3-PART DIFFERENTIAL SORTER

Mohammad Aghaamoo, Ruoyu Jiang, Braulio Cardenas Benitez, and Abraham P. Lee *University of California, Irvine, USA*

M2-265.f WHOLE BLOOD PROFILING REVEALS BIOPHYSICAL IMMUNE RESPONSE SIGNATURES FOR CLINICAL TRIAGE

Kerwin Kwek Zeming¹, Rohan Vernekar², Mui Teng Chua^{3,4}, Kai Yun Quek¹, Greg Suton², Timm Krueger², Win Sen Kuan^{3,4}, and Jongyoon Han^{1,5}

¹Singapore-MIT Alliance for Research and Technology (SMART) Centre, SINGAPORE,

²University of Edinburgh, UK, ³National University of Singapore, SINGAPORE,

⁴National University Health System, SINGAPORE, and ⁵Massachusetts Institute of Technology, USA

T3-365.f A SENSOR SURFACE ENGINEERING METHODOLOGY FOR NONINVASIVE WEARABLE ELECTROACTIVE DRUG MONITORING

Shuyu Lin, Wenzhuo Yu, Bo Wang, Yichao Zhao, Ke En, Jialun Zhu, and Sam Emaminejad *University of California, Los Angeles, USA*

T4-465.f A WEARABLE MICROFLUIDIC SYSTEM FOR HIGH SIGNAL-TO-NOISE RATIO SWEAT RATE SENSING VIA PROGRAMMABLE MICROBUBBLE GENERATION AND TRACKING

Haisong Lin, Shuyu Lin, Jorge Emiliano De Dios Suarez, Harish Athavan, Yibo Wang, Wenzhuo Yu, and Sam Emaminejad

University of California, Los Angeles, USA

W5-564.f AN EX VIVO TUMOR-DERIVED MODEL TO STUDY THE EFFECT OF THERAPEUTIC AGENTS USED FOR THE TREATEMENT OF CANCER PATIENTS

Kayla Simeone¹, Benjamin Péant¹, Euridice Carmona¹, Diane Provencher¹, Fred Saad¹, Thomas Gervais^{1,2}, and Anne-Marie Mes-Masson¹

¹Université de Montréal, CANADA and ²Polytechnique de Montréal, CANADA

W6-665.f INDEX MATCHED MICROFLUIDIC DEVICES FOR PRECISE MEASUREMENT OF SINGLE CELL MASS

Edward R. Polanco, Justin Griffin, and Thomas A. Zangle *University of Utah, USA*

Th7-764.f MECHANICAL PROPERTIES OF HYDROGEL MICRONEEDLES FOR INTERSTITIAL FLUID SAMPLING

Emilee Madsen and Jacqueline C. Linnes *Purdue University*, *USA*

Th8-864.f MICROPHYSIOLOGICAL DRUG-SCREENING PLATFORM FOR PERSONALIZED LEUKEMIA TREATMENT

Furkan Gökçe¹, Mario M. Modena¹, Beat C. Bornhauser², and Andreas Hierlemann¹ *ETH Zürich, Basel, SWITZERLAND and ²University Children's Hospital Zürich, SWITZERLAND*

Pathogen Detection & Antibiotics

M1-166.f MINIATURIZED DEVICE FOR PERFORMING PCR, INTEGRATED WITH AN ELECTROCHEMICAL DNA BIOSENSOR FOR DETECTION OF CORYNEBACTERIUM DIPHTHERIAE

Kasper Marchlewicz^{1,2,3}, Iga Ostrowska¹, Zuzanna Iwón¹, Robert Ziólkowski¹, Kamil Żukowski³, Elžbieta Jastrzebska¹, Zbigniew Brzózka¹, and Elżbieta Malinowska^{1,3}

¹Warsaw University of Technology, POLAND, ²University of Warsaw, POLAND, and

³Centre of Advanced Materials and Technologies CEZAMAT, POLAND

M1-167.f VIRUS IDENTIFICATION BY EASY TO FABRICATE NANOPORE-CHIP USING ULTRATHIN GLASS-FILM AND OPRICAL BONDING

Takatoki Yamamoto

T3-366.f

Tokyo Institute of Technology, JAPAN

M2-266.f PORTABLE MICROSCALE PLATFORM FOR MALARIA AND ANTIMALARIAL RESISTANCE SCREENING IN RESOURCE-LIMITED SETTINGS

Shreya Deshmukh¹, Oswald Byaruhanga², Patrick Tumwebaze², Bryan Greenhouse³, Elizabeth Egan¹, and Utkan Demirci¹

¹Stanford University, USA, ²Infectious Diseases Research Collaboration, UGANDA, and ³University of California, San Francisco, USA

A MULTIPLEX GENETIC DIAGNOSTIC DEVICE INTEGRATED WITH VERTICAL

PHASEGUIDES CAPABLE OF AUTONOMOUS DISPENSING FOR THE DETECTION OF ARBOVIRUS INFECTIONS

Daigo Natsuhara¹, Kisuke Tanaka¹, Hiroka Aonuma², Tatsuya Sakurai², Moeto Nagai¹, Hirotaka Kanuka², and Takayuki Shibata¹

¹Toyohashi University of Technology, JAPAN and ²Jikei University School of Medicine, JAPAN

T3-367.f QUANTIFYING BACTERIAL SPORE GERMINATION BY IMPEDANCE CYTOMETRY FOR ASSESSING HOST MICROBIOTA SUCEPTIBILITY

John Moore, Armita Salahi, Carlos Honrado, Christopher Warburton, Cirle Warren, and Nathan S. Swami *University of Virginia, USA*

T4-466.f NANO/MICROFLUIDIC DEVICE FOR EFFICIENT BACTERIA CAPTURE

Tamer Abdelfattah¹, Mahsa Jalali¹, Roozbeh Siavash Moakhar¹, Sahar Sadat Mahshid², and Sara Mahshid¹ *McGill University, CANADA and ²University of Toronto, CANADA*

T4-467.f RAPID AMPLIFICATION OF FEMTOGRAMS OF DNA WITH HIGH PURITY IN DIGITAL MICROFLUIDICS FOR SEQUENCING

Yuguang Liu, Patricio Jeraldo, Helena Mendes-Soares, Thao Masters, Heidi Nelson, Robin Patel, Nicholas Chia, and Marina Walther-Antonio *Mayo Clinic, USA*

W5-565.f AN AUTOMATED MICROFLUDICIC DIAGNOSTICS PIPELINE FOR INFECTIOUS DISEASE DETECTION IN LOW RESOURCE SETTINGS

Miren Urrutia Iturritza¹, Giulia Gaudenzi^{1,2}, Ahamad Saleem Akhtar¹, Inês Fernandes Pinto¹, Noa Lapins¹, Aman Russom¹, and Håkan Jönsson¹

¹KTH Royal Institute of Technology, SWEDEN and ²Karolinska Institute, SWEDEN

W5-566.f RAPID BACTERIA ENRICHMENT AND DIAGNOSIS OF ANTIBIOTIC RESISTANCE FROM URINE SAMPLE

Yuetao Li¹, Andrew Glidle¹, Julien Reboud¹, Jing Zhang¹, Yuanshuai Zhu¹, Jonathan M. Cooper¹, Wei Huang², and Huabing Yin¹

¹University of Glasgow, UK and ²University of Oxford, UK

W6-666.f CELL-FREE, CRISPR/CAS-BASED PAPER DIAGNOSTICS FOR FOOD AND WATERBORNE PATHOGEN DETECTION

Helena de Puig Guixe¹, Michael S. Wiederoder², Shannon K. McGraw², and James J. Collins¹ Wyss Institute for Biologically Inspired Engineering, USA and ²US Army CCDC - Soldier Center, USA

W6-667.f RESPIDISK: A POINT-OF-CARE PLATFORM FOR FULLY AUTOMATED DETECTION OF RESPIRATORY TRACT INFECTION PATHOGENS IN CLINICAL SAMPLES

Markus Rombach¹, Sebastian Hin¹, Mara Specht¹, Benita Johannsen¹, Jan Lüddecke¹, Nils Paust¹, Roland Zengerle¹, and Konstantinos Mitsakakis²

¹Hahn-Schickard, GERMANY and ²University of Freiburg, GERMANY

Th7-765.f DIRECT ISOLATION AND DETECTION OF PATHOGENIC BACTERIA USING A NANOGAP DEVICE

Jung Y. Han, Michael Yeh, and Don L. DeVoe *University of Maryland, College Park, USA*

Th7-766.f RNA/DNA AMPLIFICATION METHODS FOR THE DETECTION OF BACTERIA AND VIRUS THROUGH AN OPTOELECTRONIC LAB-ON-CHIP

Francesca Costantini¹, Nicola Lovecchio², Lorenzo Iannascoli², Valeria Scala¹, Francesco Faggioli¹, Nicoletta Pucci¹, Stefania Loreti¹, Giampiero deCesare², Augusto Nascetti², and Domenico Caputo²

¹CREA-DC Research Centre for Plant Protection and Certification, ITALY and

²Sapienza University of Rome, ITALY

Th8-865.f HIGH EFFICIENT AND SELECTABLE CONCENTRATION OF BACTEREMIA AND RAPID BACTERIAL ANTIBIOTIC SUSCEPTIBILITY TEST THROUGH ELECTROKINETIC CONCENTRATION MICRODEVICE

Kuan-Hung Chen¹, Shih-Han Lee¹, Chun-Wei Lee¹, Tseren-Onolt Ishdorj², and Fan-Gang Tseng^{1,3}
¹National Tsing Hua University, TAIWAN, ²Mongolian University of Science and Technology, MONGOLIA, and ³Academia Sinica, TAIWAN

Th8-866.f SURFACE-ENHANCED RAMAN SPECTROSCOPY BASED DETECTION OF β -LACTAMASE ACTIVITY IN SMALL SAMPLES OF RESISTANT E. COLI

Shannon H. Hilton, Martha David, Connor Hall, and Ian M. White *University of Maryland, College Park, USA*

f - Diagnostics, Drug Testing & Personalized Medicine

Testing for COVID-19, Rapid Virus Testing, Pandemic Management

M1-168.f LAMP BASED DETECTION OF SARS-COV-2 WITH LOW-COST OFF-THE-SHELF COMPONENTS

Kamalalayam Rajan Sreejith, Muhammad Umer, Narshone Soda, Surasak Kasetsirikul, Muhammad J.A. Shiddiky, and Nam-Trung Nguyen *Griffith University, AUSTRALIA*

M2-267.f 3D-PRINTED CAPILLARIC CHIP FOR INSTRUMENTATION-FREE, RAPID, AND QUANTITATIVE COVID-19 SEROLOGICAL TESTING USING SALIVA

Oriol Ymbern, Ahmad Sohrabi, Azim Parandakh, Vahid Karamzadeh, Johan Renault, Marziye Mirbagheri, Zijie Jin, Justin Lessard-Wajcer, Jay Pimprikar, Molly Shen, Lorenna Oliveira, Yiannis Paschalidis, Andy Ng, and David Juncker

McGill University, CANADA

M2-268.f LATERAL FLOW ASSAY FOR THE DETECTION OF NOROVIRUS USING PEPTIDE-COATED GOLD NANOPARTICLES

Taeyeong You, Woojin Jeong, Sun Min Kim, and Tae-Joon Jeon *Inha University, KOREA*

T3-368.f A MICROFLUIDIC APPROACH TO RAPID CRISPR-BASED DETECTION OF SARS-COV-2 RNA

Ashwin Ramachandran, Diego A. Huyke, Eesha Sharma, Malaya K. Sahoo, Niaz Banaei, Benjamin A. Pinsky, and Juan G. Santiago *Stanford University, USA*

T3-369.f MICRO-RAPID AUTONOMOUS ANALYTICAL DEVICE FOR SARS-COV-2 DETECTION

Jacqueline C. Linnes, Navaporn (Amy) Sritong, Ashlee Colbert, and Karin F.K. Ejendal *Purdue University, USA*

T4-468.f AN ADAPTABLE, MASS PRODUCTION CAPABLE, MICROFLUIDIC MIXER FOR POINT OF CARE SAMPLE PREP

Priscilla Delgado, Pranav Dorbala, Abhijit Ravindran, and David Myers *Emory University, USA*

W5-567.f DETECTION OF AVIAN INFLUENZA VIRUS AND ITS ANTIBODY BY FLUORESCENCE POLARIZATION IMMUNOASSAY

Keine Nishiyama¹, Yohei Takeda², Masatoshi Maeki¹, Akihiko Ishida¹, Hirofumi Tani¹, Koji Shigemura³, Akihide Hibara⁴, Haruko Ogawa², and Manabu Tokeshi¹

¹Hokkaido University, JAPAN, ²Obihiro University of Agriculture and Veterinary Medicine, JAPAN,

⁴Hokkaido University, JAPAN, ⁴Obihiro University of Agriculture and Veterinary Medicine, JAPAN, ³Tianma Japan, Ltd., JAPAN, and ⁴Tohoku University, JAPAN

W6-668.f ELECTROCHEMICAL CAPILLARY-FLOW IMMUNOASSAY FOR THE DETECTION OF ANTI-SARS-COV-2 ANTIBODIES

Isabelle C. Samper¹, Ana Sánchez-Cano^{1,2}, Wisarut Khamcharoen^{1,3}, Ilhoon Jang¹, Brian J. Geiss¹, David S. Dandy¹, and Charles S. Henry¹

¹Colorado State University, USA, ²Universitat Autònoma de Barcelona, SPAIN, and

³Srinakharinwirot University, THAILAND

Th7-767.f HANDHELD LIGHTWEIGHT BATTERY-OPERATED REAL-TIME PCR DEVICE FOR COVID-19 DIAGNOSIS

Geoffrey Mulberry, Matthew Moench, and Brian N. Kim *University of Central Florida, USA*

Th8-867.f HIGHLY PERFORMING POINT-OF-CARE MOLECULAR TESTING FOR SARS-COV-2 WITH RNA EXTRACTION AND ISOTHERMAL AMPLIFICATION.

Etienne Coz¹, Pierre Garneret¹, Elian Martin¹, Jean-Claude Manuguerra², Elodie Brient-Litzler², Vincent Enouf², Daniel Felipe Gonzalez Obando², Jean Christophe Olivo-Marin², Fabrice Monti¹, Sylvie Van der Werf², and Patrick Tabeling²

¹ESPCI, FRANCE and ²Institut Pasteur, FRANCE

f - Diagnostics, Drug Testing & Personalized Medicine

Drug Screening and Development

M1-169.f MICROFLUIDIC GRADIENT GENERATOR FOR DRUG SCREENING APPLICATIONS

Arian Jaberi¹, Amir Monemian Esfahani¹, Ali Tamayol^{1,2}, and Ruiguo Yang¹ *University of Nebraska, Lincoln, USA and ²University of Connecticut, USA*

M2-269.f MICROFLUIDIC IMMOBILIZED ENZYME REACTOR FOR DETERMINING THE ELIMINATION OF ENVIRONMENTAL DRUG RESIDUES IN FISH

Vera Kouhi, Tea Pihlaja, Elisa Ollikainen, and Tiina Sikanen *University of Helsinki, FINLAND*

T4-469.f "CUBOIDS" FOR MULTIPLEXED MICROFLUIDIC DRUG TESTING OF INTACT TISSUES

Adán Rodríguez, Lisa Horowitz, and Albert Folch

University of Washington, USA

W5-568.f ARTIFICIAL BRAIN "CELLS-ON-A-CHIP" FOR DRUG PERMEABILITY PREDICTION

Jaime L. Korner and Katherine S. Elvira *University of Victoria, CANADA*

W6-669.f DROPLET-BASED APPROACH TO HIGH SPEED DRUG DISCOVERY

Stacey Markovic¹, Ryan A. Dubay^{1,2}, Peter Hsi¹, Nerses J. Haroutunian¹, Cassie M. Bryan¹, Kettner Griswold Jr.¹, Eric M. Darling², Andrew P. Magyar¹, and Vishal Tandon¹ Draper Laboratory, USA and ²Brown University, USA

Th7-768.f ESTABLISHMENT OF AN AUTOMATIZED MICROFLUIDIC PLATFORM FOR SCREENING OF NOVEL HBV CAPSID ASSEMBLY MODULATORS (CAMS)

Tamás Vermes^{1,2}, Thomas Henkel³, Helmut Buschmann¹, Miquel A. Pericàs², Esther Alza², Thomas Goldner¹, and Andreas Urban¹

¹AiCuris Anti-infective Cures GmbH, GERMANY, ²Institute of Chemical Research of Catalonia (ICIQ), SPAIN, and ³Leibniz Institute of Photonic Technology (IPHT), GERMANY

Th8-868.f HIGH-THROUGHPUT GENERATION OF UNIFORM CEREBRAL BRAIN ORGANOIDS

Kyungwon Park¹, Yong Hun Jung¹, and Seok Chung^{1,2}

¹Korea University, KOREA and ²Korea Institute of Science and Technology (KIST), KOREA

f - Diagnostics, Drug Testing & Personalized Medicine

Drug Delivery

T3-370.f 2D AND 3D TUMOR MODELS ON-A-CHIP TO EVALUATE EFFECTIVENESS OF PHOTODYNMIC THERAPY (PDT) WITH GRAPHENE OXIDE CONJUGATES

Agnieszka Zuchowska, Bartlomiej Dabrowski, Artur Kasprzak, Ksenia Kaminska, Magdalena Poplawska, and Zbigniew Brzozka

Warsaw University of Technology, POLAND

T4-470.f A NOVEL MICROSYSTEM FOR STUDYING THE EFFECTIVENESS OF ELECTROCHEMOTHERAPY AND CHEMOTHERAPY PROCEDURES

Sandra Skorupska, Ilona Grabowska-Jadach, Malgorzata Pieta, Artur Dybko, and Zbigniew Brzozka Warsaw University of Technology, POLAND

W5-569.f DRUG LOADING INTO EXTRACELLULAR VESICLE VIA TONICITY CONTROL

Chaeeun Lee^{1,2}, Sumit Kumar², Juhee Park², Junyoung Kim^{1,2}, and Yoon-Kyoung Cho^{1,2}

¹Ulsan National Institute of Science and Technology (UNIST), KOREA and

²Institute for Basic Science (IBS), KOREA

W6-670.f HIGH-THROUGHPUT MICROFLUIDICS FOR EVALUATING MICROBUBBLE ENHANCED DELIVERY OF CANCER THERAPEUTICS IN SPHEROID CULTURES

Matthew D. Bourn^{1,2}, Damien V.B. Batchelor¹, Nicola Ingram², James McLaughlan^{1,2}, P. Louise Coletta², Stephen D. Evans¹, and Sally A. Peyman^{1,2}

¹University of Leeds, UK and ²St James' University Hospital, UK

Th7-769.f MASSIVELY PARALLEL INTRACELLULAR DELIVERY USING TITANIUM OXIDE NANOTUBES

Loganathan Mohan¹, Srabani Kar², Ren Hattori¹, Miho Ishii-Teshima¹, Kavitha Illath², Anuj Tiwari¹, Tuhin Subhra Santra³, Takayuki Shibata¹, and Moeto Nagai¹

¹Toyohashi University of Technology, JAPAN, ²University of Cambridge, UK, and ³Indian Institute of Technology Madras, INDIA

Others

M1-170.f INSTANT LABELING OF THERAPEUTIC STEM CELLS WITH MICROFLUIDICS FOR IN VIVO TRACKING

Todd Sulchek¹, Hossein Nejadnik², Kyung Oh Jung², Ashok J. Theruvath², Anna Liu², Wei Wu², Louise Kiru², Guillem Pratx², and Heike E. Daldrup-Link²

¹Georgia Institute of Technology, USA and ²Stanford University, USA

M2-270.f USING RBC SHAPES TO DISTINGUISH BETWEEN SICKLE CELL DISEASE AND TRAIT SAMPLES

Riddha Manna, Oshin Sharma, Anish Mahto, Srushti Singh, and Debjani Paul *Indian Institute of Technology, Bombay, INDIA*

T3-371.f PORTABLE AND AUTOMATED ANALYZER FOR RAPID AND HIGH PRECISION IN VITRO DISSOLUTION OF DRUGS

Zhongmei Chi¹, Yunxiang Feng², and Li Yang¹

¹Northeast Normal University, CHINA and ²Jingke-Oude Science and Education Instruments Co., Ltd., CHINA

Th8-869.f DEVELOPMENT OF A METHOD FOR CELL DELIVERY INTO THE SUBRETINAL SPACE USING BIODEGRADABLE NANOSHEETS

Kazuya Yamashita, Hideto Kojima, Nobuhiro Nagai, Toshiaki Abe, and Hirokazu Kaji Tohoku University, JAPAN

f - Diagnostics, Drug Testing & Personalized Medicine

Industrial Benefactor

Th7-782.f MICROFLUIDIC METHODS OF AUTOMATED LIPOSOME LIBRARY GENERATION

Valentina Nappo, Gurinder Vinner, Ben Knappett, Damiano Rossi, Richard H. Gray *Dolomite Microfluidics, UK*

f - Diagnostics, Drug Testing & Personalized Medicine

Late News

M1-181.f AN EASY-TO-USE MICROFLUIDIC CHIP WITH ISOTHERMAL NUCLEIC ACID

AMPLIFICATION FOR RAPID COVID-19 DETECTION

Dan Liu¹, Haicong Shen², Yuqian Zhang¹, and Chaoyong Yang²

¹Huaqiao University, CHINA and ²Xiamen University, CHINA

M2-280.f 3D NANO-PATTERNED FLUIDIC INTERFACE ENABLES ULTRASENSITIVE DETECTION OF CIRCULATING EXOSOMES FOR IMMUNOTHERAPY RESPONSE PREDICTION

Lingling Wu¹, Jiafeng Gao¹, and Chaoyong Yang^{1,2}

¹Shanghai Jiao Tong University, CHINA and ²Xiamen University, CHINA

M2-281.f ELECTROCHEMICAL IMPEDANCE-BASED DETECTOR FOR SARS-COV-2 ANTIBODIES

Mohamed Z. Rashed¹, Jonathan A. Kopechek¹, Mariah C. Priddy¹, Krystal T. Hamorsky¹, Kenneth E. Palmer¹, Nikhil Mittal², Joseph Valdez², and Stuart J. Williams¹

¹University of Louisville, USA and ²Agilent Technologies Inc, USA

T3-381.f AT-HOME BLOOD COLLECTION AND RNA STABILIZATION USING A CAPILLARY PRESSURE BASED DEVICE

Amanda J. Haack, Fang Yun Lim, Dakota S. Kennedy, Jing J. Lee, Erwin Berthier, and Ashleigh B. Theberge *University of Washington, USA*

T3-382.f IFAST AND RT-LAMP: AN APPROACH FOR ON-CHIP DETECTION OF SARS-CoV-2 RNA FOR RESOURCE-LIMITED SETTINGS

Pablo Rodriguez-Mateos¹, Bongkot Ngamsom¹, Cheryl Walter¹, Charlotte E. Dyer¹, Jesse Gitaka², Alexander Iles¹, and Nicole Pamme¹

¹University of Hull, UK and ²Mount Kenya University, KENYA

T4-481.f HIERARCHICAL MULTIVALENT APTAMERS-PRINTED MICROFLUIDIC DEVICE FOR ISOLATING CIRCULATING FETAL CELLS

Huimin Zhang¹, Xiyuan Yu¹, Yilong Liu², Bingqian Lin², Yidi Wang², Yanling Song², Zhi Zhu², and Chaoyong Yang^{1,2}

¹Shanghai Jiao Tong University School of Medicine, CHINA and ²Xiamen University, CHINA

T4-482.f HIGH THROUGHPUT GLOMERULUS EXPERIMENTAL MODEL DEVICE WITH MECHANICAL FILTRATION FOR DRUG DISCOVERY RESEARCH

Kotaro Doi¹, Hiroshi Kimura², Masaomi Nangaku¹, and Teruo Fujii¹ *University of Tokyo, JAPAN and ²Tokai University, JAPAN*

W5-580.f AN ULTRASENSITIVE DETECTION OF AGGREGATED α-SYNUCLEIN AS A BIOMARKER MOLECULE FOR PARKINSON DISEASE BY LIPOSOME-IMMOBILIZED CANTILEVER BIOSENSOR USING SELF-TEMPLATING PHENOMENA OF PRIONOID PROTEIN

Ryoko Kobayashi¹, Masanori Sawamura², Hodaka Yamakado², Masayuki Sohgawa³, and Minoru Noda¹ *Kyoto Institute of Technoligy, JAPAN, ²Kyoto University, JAPAN, and ³Niigata University, JAPAN*

W5-581.f MICRO-IMPLANTS WIRELESS DEVICE FOR DEEP TISSUE PHOTO THERAPEUTICS

Sophie Wan Mei Lian¹, Jin Yunxia², John S. Ho^{1,2}, and Chia-Hung Chen³

¹National University of Singapore, SINGAPORE, ²Institute for Health Innovation and Technology (iHealthtech) and ³City University of Hong Kong, HONG KONG

W6-681.f ELECTROMECHANICAL LAB-ON-A-CHIP PLATFORM FOR CREATININE ANALYSIS USING AUTOMATED ELISA PROTOCOLS

Betul Karakuzu, E. Alperay Tarim, Cemre Oksuz, and H. Cumhur Tekin *Izmir Institute of Technology, TURKEY*

W6-682.f HUMAN NEUTROPHIL CHEMOTAX THROUGH TAPERED CHANNELS IN RESPONSE TO COMPLEMENT ACTIVATION AND INHIBITION

Sinan Muldur and Daniel Irimia

Massachusetts General Hospital, Harvard Medical, Shriners Hospital for Children, USA

Th7-780.f PERSONALIZED ANTIBIOTHERAPY VIA "FINGER PRICK" BLOOD TEST

H. Ceren Ates, Nils Schneider, Hasti Mohsenin, Wilfried Weber, Gerald Urban, and Can Dincer *University of Freiburg, GERMANY*

Th8-878.f MICROFLUIDIC ASSAYS MEASURING NEUTROPHIL RESPONSES TO BORRELIA BURGDORFERI IDENTIFY COMPLEMENT COMPONENT C5A AS A KEY MEDIATOR

Felix Ellett, Sinan Mulder, Anika L. Marand, Charles Marvil, John Branda, Jacob E. LeMieux, Adam B. Raff, Klemen Strle, and Daniel Irimia

Massachusetts General Hospital, Harvard Medical, Shriners Hospital for Children, USA

g - Other Applications of Microfluidics Artificial Intelligence and Microfluidics

T4-471.g AI-ASSISTED MICROFLUIDIC STIFFNESS GRADIENT FOR ANALYSIS OF 3D CELL CULTURES

IN HYDROGEL BEADS

Vasileios Anagnostidis, Dalia Al-Saadi, and Fabrice Gielen *University of Exeter, UK*

W5-570.g AI-GUIDED MICROFLUIDIC SYNTHESIS OF COLLOIDAL LEAD HALIDE PEROVSKITE OUANTUM DOTS

Robert W. Epps¹, Amanda A. Volk¹, Kameel Abdel-Latif¹, Kristofer G. Reyes², and Milad Abolhasani¹ *North Carolina State University, USA and ²University of Buffalo, USA*

W6-671.g DEEP LEARNING CLASSIFICATION OF PARTICLE DEPTH FOR DEFOCUSING 3D-3C micro-PTV

Evan Lammertse¹, Martin Sauzade¹, Hongxiao Li², Jun Kong², and Eric Brouzes¹ *Stony Brook University, USA and ²Georgia State University, USA*

Th7-770.g FLOW FOCUS-FREE IMAGE FLOW CYTOMETRY BY IMAGE PROCESSING AND DATA ESTIMATION

Arpith Vedhanayagam and Amar S. Basu Wayne State University, USA

Th8-870.g INTELLIGENT ON-CHIP ANALYSIS OF THROMBOSIS IN ECMO WITH A GOAT MODEL

Yuqi Zhou¹, Atsushi Yasumoto^{1,2}, Masako Nishikawa¹, Yuya Nobori¹, Yi Wang¹, Masaki Anraku^{1,3}, Yutaka Yatomi¹, and Keisuke Goda^{1,4,5}

¹University of Tokyo, JAPAN, ²Hokkaido University Hospital, JAPAN,

³Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, JAPAN, ⁴Wuhan University, CHINA, and ⁵University of California, Los Angeles, USA

g - Other Applications of Microfluidics

Fuel Cells & Energy

M1-171.g COTTON-BASED MICROFLUIDIC EVAPORATOR TO ENHANCE THE PERFORMANCE OF A THERMOELECTRIC DEVICE

Liang Jun Zheng, Dong Hee Kang, Na Kyong Kim, and Hyun Wook Kang *Chonnam National University, KOREA*

M2-271.g FLUORESCENT VISUALIZATION OF OIL DISPLACEMENT IN A MICROFLUIDIC DEVICE FOR ENHANCED OIL RECOVERY APPLICATIONS

Khashayar R. Bajgiran, Hannah C. Hymel, Shayan Sombolestani, Nora Safa, Nathalie Dante, James A. Dorman, Dandina Rao, and Adam T. Melvin *Louisiana State University, USA*

T3-372.g UNDERSTANDING POLYMER RETENTION IN POROUS FORMATIONS USING MICROFLUIDICS

Antonia Sugar, Maged F. Serag, Ulrich Buttner, Satoshi Habuchi, and Hussein Hoteit King Abdullah University of Science & Technology (KAUST), SAUDI ARABIA

g - Other Applications of Microfluidics

Microfluidics for X-Ray and e-Beam Applications

T4-472.g THREE DIMENSIONAL HYDRODYNAMIC FOCUSING IN A MONOLITHIC FUSED SILICA MICROFLUIDIC DEVICE

Diego A. Huyke¹, Ashwin Ramachandran¹, Thomas Kroll², Daniel P. DePonte², and Juan G. Santiago¹ *Stanford University, USA and ²SLAC National Accelerator Lab, USA*

g - Other Applications of Microfluidics

Others

W5-571.g AEROSOLIZED DROPLETS AND OPEN MICROFLUIDICS FOR CAPTURING AT-HOME AIRBORNE EXPOSURES

Ulri N. Lee, Tammi L. van Neel, Fang Yun Lim, Jean Berthier, Erwin Berthier, and Ashleigh B. Theberge *University of Washington, USA*

W6-672.g REPROGRAMMABLE FERROMAGNETIC DOMAINS FOR RECONFIGURABLE SOFT MAGNETIC ACTUATORS

Hyeonseo Song, Hajun Lee, Jaebyeong Lee, Jun Kyu Choe, Suwoo Lee, Jee Yoon Yi, Sunghoon Park, Jung-Woo Yoo, Min Sang Kwon, and Jiyun Kim

¹Ulsan National Institute of Science & Technology (UNIST), KOREA and ²Seoul National University, KOREA

Th7-771.g TOWARDS ASTROBIOLOGICAL NANOSATELLITE MISSION – LOC INSTRUMENTATION FOR CELL CULTIVATION RESEARCH IN SPACE

Agnieszka Podwin¹, Patrycja Śniadek¹, Adrianna Graja^{1,2}, Bartosz Kawa¹, Marcin Bialas¹, Wojciech Kubicki¹, Marta Jurga³, Agata Kaczmarek³, Krzysztof Matkowski³, Rafal Walczak¹, and Jan Dziuban¹ Wroclaw University of Science and Technology, POLAND, ²SatRevolution S.A., POLAND, and ³Wroclaw University of Environmental and Life Sciences, POLAND

g - Industrial Benefactor

W5-572.g A COMPARISON OF CYCLO OLEFIN POLYMER WITH GLASS AND OTHER PLASTICS FOR THE CONSTRUCTION OF MOLECULAR DIAGNOSTIC CONSUMABLE DEVICES

Tachi Sawaguchi, Shotaro Suzuki, Hiro Fujiki, Toshiro Katayama, and Larry Atupem *Zeon Specialty Materials Inc., USA*

g - Other Applications of Microfluidics

Late News

Th7-781.g A KINETIC MATCHING APPROACH ON MICROFLUIDIC PAPER-BASED ANALYTICAL DEVICES FOR RAPID ASSESSMENT OF TOTAL POLYPHENOL CONTENT IN TEA

Qinqin Zheng^{1,3}, Zhenxia Hao^{1,2}, Lili Jin¹, Hongping Chen^{1,2}, and Chengyin Lu^{1,2}
¹Chinese Academy of Agricultural Sciences, CHINA, ²Ministry of Agriculture and Rural Affairs, CHINA, and ³Graduate School of Chinese Academy of Agricultural Sciences, CHINA